Magnetic Resonance-Guided Cancer Therapy Radiomics and Machine Learning Models for Response Prediction

被引:1
|
作者
Fajemisin, Jesutofunmi Ayo [1 ,2 ]
Gonzalez, Glebys [2 ]
Rosenberg, Stephen A. [2 ,3 ]
Ullah, Ghanim [1 ]
Redler, Gage [3 ]
Latifi, Kujtim [3 ]
Moros, Eduardo G. [1 ,2 ,3 ]
El Naqa, Issam [1 ,2 ]
机构
[1] Univ S Florida, Dept Phys, Tampa, FL 33620 USA
[2] H Lee Moffitt Canc Ctr & Res Inst, Machine Learning Dept, Tampa, FL 33612 USA
[3] H Lee Moffitt Canc Ctr & Res Inst, Radiat Oncol Dept, Tampa, FL 33612 USA
关键词
MRI; MRI-Linac; radiomics; clinical outcomes; machine learning; MRI;
D O I
10.3390/tomography10090107
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Magnetic resonance imaging (MRI) is known for its accurate soft tissue delineation of tumors and normal tissues. This development has significantly impacted the imaging and treatment of cancers. Radiomics is the process of extracting high-dimensional features from medical images. Several studies have shown that these extracted features may be used to build machine-learning models for the prediction of treatment outcomes of cancer patients. Various feature selection techniques and machine models interrogate the relevant radiomics features for predicting cancer treatment outcomes. This study aims to provide an overview of MRI radiomics features used in predicting clinical treatment outcomes with machine learning techniques. The review includes examples from different disease sites. It will also discuss the impact of magnetic field strength, sample size, and other characteristics on outcome prediction performance.
引用
收藏
页码:1439 / 1454
页数:16
相关论文
共 50 条
  • [31] Delta radiomics for rectal cancer response prediction using low field magnetic resonance guided radiotherapy: an external validation
    Cusumano, Davide
    Boldrini, Luca
    Yadav, Poonam
    Yu, Gao
    Musurunu, Bindu
    Chiloiro, Giuditta
    Piras, Antonio
    Lenkowicz, Jacopo
    Placidi, Lorenzo
    Romano, Angela
    De Luca, Viola
    Votta, Claudio
    Barbaro, Brunella
    Gambacorta, Maria Antonietta
    Bassetti, Michael F.
    Yang, Yingli
    Indovina, Luca
    Valentini, Vincenzo
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 84 : 186 - 191
  • [32] Magnetic resonance-guided focused ultrasound
    Albuquerque, Felipe C.
    NEUROSURGICAL FOCUS, 2013, 34 (05)
  • [33] MAGNETIC RESONANCE-GUIDED THERMAL SURGERY
    CLINE, HE
    SCHENCK, JF
    WATKINS, RD
    HYNYNEN, K
    JOLESZ, FA
    MAGNETIC RESONANCE IN MEDICINE, 1993, 30 (01) : 98 - 106
  • [34] Magnetic Resonance-Guided Gynecologic Brachytherapy
    Damato, Antonio L.
    Viswanathan, Akila N.
    MAGNETIC RESONANCE IMAGING CLINICS OF NORTH AMERICA, 2015, 23 (04) : 633 - +
  • [35] Magnetic Resonance-Guided Prostate Biopsy
    Dianat, S. Saeid
    Carter, H. Ballentine
    Macura, Katarzyna J.
    MAGNETIC RESONANCE IMAGING CLINICS OF NORTH AMERICA, 2015, 23 (04) : 621 - +
  • [36] Delta-Radiomics Using Machine Learning Classifiers With Auxiliary Data Sets to Predict Disease Progression During Magnetic Resonance-Guided Radiotherapy in Adrenal Metastases
    Fajemisin, Jesutofunmi A.
    Bryant, John M.
    Saghand, Payman G.
    Mills, Matthew N.
    Latifi, Kujtim
    Moros, Eduardo G.
    Feygelman, Vladimir
    Frakes, Jessica M.
    Hoffe, Sarah E.
    Mittauer, Kathryn E.
    Kutuk, Tugce
    Kotecha, Rupesh
    El Naqa, Issam
    Rosenberg, Stephen A.
    JCO CLINICAL CANCER INFORMATICS, 2025, 9
  • [37] Magnetic resonance-guided percutaneous microwave coagulation therapy for liver metastases of breast cancer in a case
    Umeda T.
    Abe H.
    Kurumi Y.
    Naka S.
    Shiomi H.
    Hanasawa K.
    Morikawa S.
    Tani T.
    Breast Cancer, 2005, 12 (4) : 317 - 321
  • [38] Adaptive Magnetic Resonance-Guided External Beam Radiation Therapy for Consolidation in Recurrent Cervical Cancer
    Felici, Felix
    Benkreira, Mohamed
    Lambaudie, Eric
    Fau, Pierre
    Mailleux, Hugues
    Ferre, Marjorie
    Gonzague-Casabianca, Laurence
    ADVANCES IN RADIATION ONCOLOGY, 2022, 7 (06)
  • [39] Delta radiomics for rectal cancer response prediction with hybrid 0.35T magnetic resonance-guided radiotherapy (MRgRT): a hypothesis-generating study for an innovative personalized medicine approach
    Boldrini, Luca
    Cusumano, Davide
    Chiloiro, Giuditta
    Casa, Calogero
    Masciocchi, Carlotta
    Lenkowicz, Jacopo
    Cellini, Francesco
    Dinapoli, Nicola
    Azario, Luigi
    Teodoli, Stefania
    Gambacorta, Maria Antonietta
    De Spirito, Marco
    Valentini, Vincenzo
    RADIOLOGIA MEDICA, 2019, 124 (02): : 145 - 153
  • [40] Quantitative magnetic resonance imaging responses in head and neck cancer patients treated with magnetic resonance-guided hypofractionated radiation therapy
    Bonate, Ryan
    Awan, Musaddiq J.
    Himburg, Heather A.
    Wong, Stuart
    Shukla, Monica
    Tarima, Sergey
    Zenga, Joseph
    Paulson, Eric S.
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2025, 33