Enhanced charge transport of wide-bandgap perovskite solar cells enabled by crown ether-mediated crystal modulation

被引:1
|
作者
Zhong, Han [1 ]
Liu, Xuanling [1 ]
Wang, Xuanyu [1 ]
Yang, Jianfei [1 ]
Zhang, Ziling [1 ]
Li, Jinxian [1 ]
Liu, Jianbo [3 ]
Shen, Heping [2 ]
Lin, Hong [1 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing, Peoples R China
[2] Australian Natl Univ, Sch Engn, Canberra, ACT, Australia
[3] Tsinghua Univ, Minist Educ China, Sch Mat Sci & Engn, Key Lab Adv Mat, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
HALIDE PEROVSKITES; PERFORMANCE; EFFICIENT; FORMAMIDINIUM;
D O I
10.1039/d4ta04151h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Further improving the performance of wide-bandgap perovskite solar cells has attracted significant attention due to its crucial role in further lifting the power conversion efficiency (PCE) of perovskite-based tandem solar cells. The majority of the efforts have focused on reducing the loss of open-circuit voltage (Voc), while little attention has been paid to improving the fill factor (FF). Herein, we employ a crown ether to manipulate the crystallization process of wide-bandgap perovskites. The strong affinity of crown ether with the metal cations suppresses the fast precipitation of cesium salts and delays the crystallization process during the deposition of the perovskite, leading to large grains and elimination of lateral grain boundaries. Moreover, the perovskite film treated with the crown ether exhibits a pronounced orientation of (110), leading to high conductivity and mobility. The improved charge transport properties within the perovskite significantly increase the FF of the as-prepared perovskite solar cell by an absolute value of 3%. In combination with the passivation of uncoordinated Pb2+ defects, the champion wide-bandgap (1.68 eV) solar cell with an n-i-p architecture shows a high FF of 83%, a Voc of 1.21 V, and a PCE of 20.6%. Meanwhile, the long-term stability of the devices is enhanced, with the unencapsulated devices retaining 99.6% of their initial PCE after 1080 hours of storage in air. This work presents a new strategy to further improve the performance of wide-bandgap perovskites and perovskite-based tandem devices. Benzo-18-crown-6-ether was employed to regulate the crystallization of wide-bandgap perovskites, inducing the increased crystallinity and favorable crystal orientation, resulting in improved performance and stability of the corresponding devices.
引用
收藏
页码:24593 / 24600
页数:8
相关论文
共 50 条
  • [31] Spectral Splitting Solar Cells Consisting of a Mesoscopic Wide-Bandgap Perovskite Solar Cell and an Inverted Narrow-Bandgap Perovskite Solar Cell
    Ito, Kei
    Nonomura, Kazuteru
    Kan, Ryota
    Tada, Keishi
    Lin, Ching Chang
    Kinoshita, Takumi
    Bessho, Takeru
    Uchida, Satoshi
    Segawa, Hiroshi
    ACS OMEGA, 2023, 9 (02): : 3028 - 3034
  • [32] Solar cells based on 1.77 eV wide-bandgap perovskite with azetidinium iodide offer enhanced efficiency and stability
    Dong, Zexian
    Cao, Huanqi
    Wang, Wentao
    Yin, Shougen
    Hao, Feng
    Ding, Yong
    Yan, Keyou
    Zuo, Chuantian
    Ding, Liming
    CHEMICAL ENGINEERING JOURNAL, 2025, 504
  • [33] Regulating Crystal Orientation via Ligand Anchoring Enables Efficient Wide-Bandgap Perovskite Solar Cells and Tandems
    Guan, Hongling
    Zhou, Shun
    Fu, Shiqiang
    Pu, Dexin
    Chen, Xuepeng
    Ge, Yansong
    Wang, Shuxin
    Wang, Chen
    Cui, Hongsen
    Liang, Jiwei
    Hu, Xuzhi
    Meng, Weiwei
    Fang, Guojia
    Ke, Weijun
    ADVANCED MATERIALS, 2024, 36 (01)
  • [34] Suppressing charge recombination in a methylammonium-free wide-bandgap perovskite film for high-performance and stable perovskite solar cells
    Ye, Qiufeng
    Hu, Wenzheng
    Zhu, Junchi
    Cai, Ziyu
    Zhang, Hengkang
    Dong, Tao
    Yu, Boyang
    Chen, Feiyang
    Wei, Xieli
    Yao, Bo
    Dou, Weidong
    Fang, Zebo
    Ye, Feng
    Liu, Zhun
    Li, Tie
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (16) : 5866 - 5875
  • [35] Charge transport and recombination in wide-bandgap Y6 derivatives-based organic solar cells
    Firdaus, Yuliar
    He, Qiao
    Muliani, Lia
    Rosa, Erlyta Septa
    Heeney, Martin
    Anthopoulos, Thomas D.
    ADVANCES IN NATURAL SCIENCES-NANOSCIENCE AND NANOTECHNOLOGY, 2022, 13 (02)
  • [36] Defect engineering in wide-bandgap perovskites for efficient perovskite–silicon tandem solar cells
    Guang Yang
    Zhenyi Ni
    Zhengshan J. Yu
    Bryon W. Larson
    Zhenhua Yu
    Bo Chen
    Abdulwahab Alasfour
    Xun Xiao
    Joseph M. Luther
    Zachary C. Holman
    Jinsong Huang
    Nature Photonics, 2022, 16 : 588 - 594
  • [37] Efficient Semi-Transparent Wide-Bandgap Perovskite Solar Cells Enabled by Pure-Chloride 2D-Perovskite Passivation
    Yang, Liu
    Jin, Yongbin
    Fang, Zheng
    Zhang, Jinyan
    Nan, Ziang
    Zheng, Lingfang
    Zhuang, Huihu
    Zeng, Qinghua
    Liu, Kaikai
    Deng, Bingru
    Feng, Huiping
    Luo, Yujie
    Tian, Chengbo
    Cui, Changcai
    Xie, Liqiang
    Xu, Xipeng
    Wei, Zhanhua
    NANO-MICRO LETTERS, 2023, 15 (01)
  • [38] Suppressing the Photoinduced Halide Segregation in Wide-Bandgap Perovskite Solar Cells by Strain Relaxation
    Liu, Hui
    Dong, Jing
    Wang, Pengyang
    Shi, Biao
    Zhao, Ying
    Zhang, Xiaodan
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (41)
  • [39] Interfacial Engineering of Wide-Bandgap Perovskites for Efficient Perovskite/CZTSSe Tandem Solar Cells
    Wang, Deng
    Guo, Hongling
    Wu, Xin
    Deng, Xiang
    Li, Fengzhu
    Li, Zhen
    Lin, Francis
    Zhu, Zonglong
    Zhang, Yi
    Xu, Baomin
    Jen, Alex K. Y.
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (02)
  • [40] Efficient Semi-Transparent Wide-Bandgap Perovskite Solar Cells Enabled by Pure-Chloride 2D-Perovskite Passivation
    Liu Yang
    Yongbin Jin
    Zheng Fang
    Jinyan Zhang
    Ziang Nan
    Lingfang Zheng
    Huihu Zhuang
    Qinghua Zeng
    Kaikai Liu
    Bingru Deng
    Huiping Feng
    Yujie Luo
    Chengbo Tian
    Changcai Cui
    Liqiang Xie
    Xipeng Xu
    Zhanhua Wei
    Nano-Micro Letters, 2023, 15 (08) : 42 - 55