Enhanced charge transport of wide-bandgap perovskite solar cells enabled by crown ether-mediated crystal modulation

被引:1
|
作者
Zhong, Han [1 ]
Liu, Xuanling [1 ]
Wang, Xuanyu [1 ]
Yang, Jianfei [1 ]
Zhang, Ziling [1 ]
Li, Jinxian [1 ]
Liu, Jianbo [3 ]
Shen, Heping [2 ]
Lin, Hong [1 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing, Peoples R China
[2] Australian Natl Univ, Sch Engn, Canberra, ACT, Australia
[3] Tsinghua Univ, Minist Educ China, Sch Mat Sci & Engn, Key Lab Adv Mat, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
HALIDE PEROVSKITES; PERFORMANCE; EFFICIENT; FORMAMIDINIUM;
D O I
10.1039/d4ta04151h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Further improving the performance of wide-bandgap perovskite solar cells has attracted significant attention due to its crucial role in further lifting the power conversion efficiency (PCE) of perovskite-based tandem solar cells. The majority of the efforts have focused on reducing the loss of open-circuit voltage (Voc), while little attention has been paid to improving the fill factor (FF). Herein, we employ a crown ether to manipulate the crystallization process of wide-bandgap perovskites. The strong affinity of crown ether with the metal cations suppresses the fast precipitation of cesium salts and delays the crystallization process during the deposition of the perovskite, leading to large grains and elimination of lateral grain boundaries. Moreover, the perovskite film treated with the crown ether exhibits a pronounced orientation of (110), leading to high conductivity and mobility. The improved charge transport properties within the perovskite significantly increase the FF of the as-prepared perovskite solar cell by an absolute value of 3%. In combination with the passivation of uncoordinated Pb2+ defects, the champion wide-bandgap (1.68 eV) solar cell with an n-i-p architecture shows a high FF of 83%, a Voc of 1.21 V, and a PCE of 20.6%. Meanwhile, the long-term stability of the devices is enhanced, with the unencapsulated devices retaining 99.6% of their initial PCE after 1080 hours of storage in air. This work presents a new strategy to further improve the performance of wide-bandgap perovskites and perovskite-based tandem devices. Benzo-18-crown-6-ether was employed to regulate the crystallization of wide-bandgap perovskites, inducing the increased crystallinity and favorable crystal orientation, resulting in improved performance and stability of the corresponding devices.
引用
收藏
页码:24593 / 24600
页数:8
相关论文
共 50 条
  • [21] Very wide-bandgap nanostructured metal oxide materials for perovskite solar cells
    Larina, L. L.
    Alexeeva, O. V.
    Almjasheva, O. V.
    Gusarov, V. V.
    Kozlov, S. S.
    Nikolskaia, A. B.
    Vildanova, M. F.
    Shevaleevskiy, O. I.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2019, 10 (01): : 70 - 75
  • [22] Impact of Precursor Concentration on Perovskite Crystallization for Efficient Wide-Bandgap Solar Cells
    Du, Shuxian
    Yang, Jing
    Qu, Shujie
    Lan, Zhineng
    Sun, Tiange
    Dong, Yixin
    Shang, Ziya
    Liu, Dongxue
    Yang, Yingying
    Yan, Luyao
    Wang, Xinxin
    Huang, Hao
    Ji, Jun
    Cui, Peng
    Li, Yingfeng
    Li, Meicheng
    MATERIALS, 2022, 15 (09)
  • [23] Minimizing the Ohmic Resistance of Wide-Bandgap Perovskite for Semitransparent and Tandem Solar Cells
    Ye, Haoran
    Xu, Weiquan
    Tang, Fei
    Yu, Bohao
    Zhang, Cuiling
    Ma, Nanxi
    Lu, Feiping
    Yang, Yuzhao
    Shen, Kai
    Duan, Weiyuan
    Lambertz, Andreas
    Ding, Kaining
    Mai, Yaohua
    SOLAR RRL, 2023, 7 (03)
  • [24] Reductive cation for scalable wide-bandgap perovskite solar cells in ambient air
    Yang, Guang
    Gu, Hangyu
    Yin, Jun
    Fei, Chengbin
    Shi, Zhifang
    Shi, Xiaoqiang
    Ying, Xingjian
    Huang, Jinsong
    NATURE SUSTAINABILITY, 2025,
  • [25] Compositional texture engineering for highly stable wide-bandgap perovskite solar cells
    Jiang, Qi
    Tong, Jinhui
    Scheidt, Rebecca A.
    Wang, Xiaoming
    Louks, Amy E.
    Xian, Yeming
    Tirawat, Robert
    Palmstrom, Axel F.
    Hautzinger, Matthew P.
    Harvey, Steven P.
    Johnston, Steve
    Schelhas, Laura T.
    Larson, Bryon W.
    Warren, Emily L.
    Beard, Matthew C.
    Berry, Joseph J.
    Yan, Yanfa
    Zhu, Kai
    SCIENCE, 2022, 378 (6626) : 1295 - 1300
  • [26] Self-Powered Sensors Enabled by Wide-Bandgap Perovskite Indoor Photovoltaic Cells
    Mathews, Ian
    Kantareddy, Sai Nithin Reddy
    Sun, Shijing
    Layurova, Mariya
    Thapa, Janak
    Correa-Baena, Juan-Pablo
    Bhattacharyya, Rahul
    Buonassisi, Tonio
    Sarma, Sanjay
    Peters, Ian Marius
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (42)
  • [27] Wide-Bandgap Organic-Inorganic Lead Halide Perovskite Solar Cells
    Tong, Yao
    Najar, Adel
    Wang, Le
    Liu, Lu
    Du, Minyong
    Yang, Jing
    Li, Jianxun
    Wang, Kai
    Liu, Shengzhong
    ADVANCED SCIENCE, 2022, 9 (14)
  • [28] Vacuum-Deposited Wide-Bandgap Perovskite for All-Perovskite Tandem Solar Cells
    Chiang, Yu-Hsien
    Frohna, Kyle
    Salway, Hayden
    Abfalterer, Anna
    Pan, Linfeng
    Roose, Bart
    Anaya, Miguel
    Stranks, Samuel D.
    ACS ENERGY LETTERS, 2023, 8 (06) : 2728 - 2737
  • [29] Advancements and Challenges in Wide-Bandgap Perovskite Solar Cells: From Single Junction to Tandem Solar Cells
    Liu, Lu
    Zheng, Dexu
    Du, Minyong
    Liu, Jishuang
    Liu, Jieqiong
    Li, Zhipeng
    Dong, Xinrui
    Xu, Chang
    He, Yiyang
    Wang, Kai
    Liu, Shengzhong
    SOLAR RRL, 2024, 8 (17):
  • [30] Efficient and Stable Inverted Wide-Bandgap Perovskite Solar Cells and Modules Enabled by Hybrid Evaporation-Solution Method
    Afshord, Amir Zarean
    Uzuner, Bahri Eren
    Soltanpoor, Wiria
    Sedani, Salar H.
    Aernouts, Tom
    Gunbas, Gorkem
    Kuang, Yinghuan
    Yerci, Selcuk
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (31)