Enhanced charge transport of wide-bandgap perovskite solar cells enabled by crown ether-mediated crystal modulation

被引:1
|
作者
Zhong, Han [1 ]
Liu, Xuanling [1 ]
Wang, Xuanyu [1 ]
Yang, Jianfei [1 ]
Zhang, Ziling [1 ]
Li, Jinxian [1 ]
Liu, Jianbo [3 ]
Shen, Heping [2 ]
Lin, Hong [1 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing, Peoples R China
[2] Australian Natl Univ, Sch Engn, Canberra, ACT, Australia
[3] Tsinghua Univ, Minist Educ China, Sch Mat Sci & Engn, Key Lab Adv Mat, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
HALIDE PEROVSKITES; PERFORMANCE; EFFICIENT; FORMAMIDINIUM;
D O I
10.1039/d4ta04151h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Further improving the performance of wide-bandgap perovskite solar cells has attracted significant attention due to its crucial role in further lifting the power conversion efficiency (PCE) of perovskite-based tandem solar cells. The majority of the efforts have focused on reducing the loss of open-circuit voltage (Voc), while little attention has been paid to improving the fill factor (FF). Herein, we employ a crown ether to manipulate the crystallization process of wide-bandgap perovskites. The strong affinity of crown ether with the metal cations suppresses the fast precipitation of cesium salts and delays the crystallization process during the deposition of the perovskite, leading to large grains and elimination of lateral grain boundaries. Moreover, the perovskite film treated with the crown ether exhibits a pronounced orientation of (110), leading to high conductivity and mobility. The improved charge transport properties within the perovskite significantly increase the FF of the as-prepared perovskite solar cell by an absolute value of 3%. In combination with the passivation of uncoordinated Pb2+ defects, the champion wide-bandgap (1.68 eV) solar cell with an n-i-p architecture shows a high FF of 83%, a Voc of 1.21 V, and a PCE of 20.6%. Meanwhile, the long-term stability of the devices is enhanced, with the unencapsulated devices retaining 99.6% of their initial PCE after 1080 hours of storage in air. This work presents a new strategy to further improve the performance of wide-bandgap perovskites and perovskite-based tandem devices. Benzo-18-crown-6-ether was employed to regulate the crystallization of wide-bandgap perovskites, inducing the increased crystallinity and favorable crystal orientation, resulting in improved performance and stability of the corresponding devices.
引用
收藏
页码:24593 / 24600
页数:8
相关论文
共 50 条
  • [1] Matching Charge Extraction Contact for Wide-Bandgap Perovskite Solar Cells
    Lin, Yuze
    Chen, Bo
    Zhao, Fuwen
    Zheng, Xiaopeng
    Deng, Yehao
    Shao, Yuchuan
    Fang, Yanjun
    Bai, Yang
    Wang, Chunru
    Huang, Jinsong
    ADVANCED MATERIALS, 2017, 29 (26)
  • [2] AlGaN as an electron transport layer for wide-bandgap perovskite solar cells
    Hombe, Atsushi
    Saiki, Shinya
    Mori, Tetsuya
    Saito, Yuji
    Tanimoto, Tsutomu
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2023, 62 (SK)
  • [3] Quadruple-Cation Wide-Bandgap Perovskite Solar Cells with Enhanced Thermal Stability Enabled by Vacuum Deposition
    Susic, Isidora
    Gil-Escrig, Lidon
    Palazon, Francisco
    Sessolo, Michele
    Bolink, Henk J.
    ACS ENERGY LETTERS, 2022, 7 (04) : 1355 - 1363
  • [4] Investigation of the Selectivity of Carrier Transport Layers in Wide-Bandgap Perovskite Solar Cells
    Kavadiya, Shalinee
    Onno, Arthur
    Boyd, Caleb C.
    Wang, Xingyi
    Cetta, Alexa
    McGehee, Michael D.
    Holman, Zachary C.
    SOLAR RRL, 2021, 5 (07)
  • [5] Recent Advances in Wide-Bandgap Perovskite Solar Cells
    Mei, Jianjun
    Yan, Feng
    ADVANCED MATERIALS, 2025,
  • [6] Wide-bandgap, low-bandgap, and tandem perovskite solar cells
    Song, Zhaoning
    Chen, Cong
    Li, Chongwen
    Awni, Rasha A.
    Zhao, Dewei
    Yan, Yanfa
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2019, 34 (09)
  • [7] Enhancing Charge Transport of 2D Perovskite Passivation Agent for Wide-Bandgap Perovskite Solar Cells Beyond 21%
    Ye, Jiselle Y.
    Tong, Jinhui
    Hu, Jun
    Xiao, Chuanxiao
    Lu, Haipeng
    Dunfield, Sean P.
    Kim, Dong Hoe
    Chen, Xihan
    Larson, Bryon W.
    Hao, Ji
    Wang, Kang
    Zhao, Qian
    Chen, Zheng
    Hu, Huamin
    You, Wei
    Berry, Joseph J.
    Zhang, Fei
    Zhu, Kai
    SOLAR RRL, 2020, 4 (06)
  • [8] Efficient wide-bandgap perovskite solar cells enabled by doping a bromine-rich molecule
    He, Rui
    Chen, Tingting
    Xuan, Zhipeng
    Guo, Tianzhen
    Luo, Jincheng
    Jiang, Yiting
    Wang, Wenwu
    Zhang, Jingquan
    Hao, Xia
    Wu, Lili
    Wang, Ye
    Constantinou, Iordania
    Ren, Shengqiang
    Zhao, Dewei
    NANOPHOTONICS, 2021, 10 (08) : 2059 - 2068
  • [9] Interfacial passivation of wide-bandgap perovskite solar cells and tandem solar cells
    Xia, Rui
    Xu, Yibo
    Chen, Bingbing
    Kanda, Hiroyuki
    Franckevicius, Marius
    Gegevicius, Rokas
    Wang, Shubo
    Chen, Yifeng
    Chen, Daming
    Ding, Jianning
    Yuan, Ningyi
    Zhao, Ying
    Roldan-Carmona, Cristina
    Zhang, Xiaodan
    Dyson, Paul J.
    Nazeeruddin, Mohammad Khaja
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (38) : 21939 - 21947
  • [10] Wide-Bandgap Perovskite/Gallium Arsenide Tandem Solar Cells
    Li, Zijia
    Kim, Tae Hak
    Han, Sung Yong
    Yun, Yeo-Jun
    Jeong, Seonghwa
    Jo, Bonghyun
    Ok, Song Ah
    Yim, Woongbin
    Lee, Seung Hu
    Kim, Kangho
    Moon, Sunghyun
    Park, Ji-Yong
    Ahn, Tae Kyu
    Shin, Hyunjung
    Lee, Jaejin
    Park, Hui Joon
    ADVANCED ENERGY MATERIALS, 2020, 10 (06)