On Existence and Numerical Solution of a New Class of Nonlinear Second Degree Integro-Differential Volterra Equation with Convolution Kernel

被引:0
|
作者
Lemita, S. [1 ,2 ]
Guessoumi, M. L. [3 ]
机构
[1] Echahid Cheikh Larbi Tebessi Univ, Dept Math & Comp Sci, Tebessa 12022, Algeria
[2] Univ 8 Mai 1945, Lab Math Appl & Modelisat, Guelma 24000, Algeria
[3] Ecole Normale Super Ouargla, Dept Sci Exact, Ouargla 30000, Algeria
关键词
Volterra equation; integro-differential equation; convolution kernel; Schauder fixed point theorem; Nystr & ouml; m method; INTEGRAL-EQUATION; FREDHOLM;
D O I
10.1134/S1995423924030042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers a new class of nonlinear second degree integro-differential Volterra equation with a convolution kernel. We derive some sufficient conditions to establish the existence and uniqueness of solutions by using Schauder fixed point theorem. Moreover, the Nystr & ouml;m method is applied to obtain the approximate solution of the proposed Volterra equation. A numerical examples are given to validate the adduced results.
引用
收藏
页码:245 / 261
页数:17
相关论文
共 50 条
  • [41] An efficient numerical algorithm for solving nonlinear fractional Volterra integro-differential equation
    Dai, Xuefei
    Guan, Chaoyue
    Niu, Jing
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (01):
  • [42] Numerical Approach for Delay Volterra Integro-Differential Equation
    Baharum, Nur Auni
    Majid, Zanariah Abdul
    Senu, Norazak
    Rosali, Haliza
    SAINS MALAYSIANA, 2022, 51 (12): : 4125 - 4144
  • [43] Research of a multistep method applied to numerical solution of volterra integro-differential equation
    Imanova, M.
    Mehdiyeva, G.
    Ibrahimov, V.
    World Academy of Science, Engineering and Technology, 2010, 70 : 267 - 270
  • [44] Stability inequalities and numerical solution for neutral Volterra delay integro-differential equation
    Amirali, Ilhame
    Acar, Hulya
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 436
  • [45] Research of a multistep method applied to numerical solution of volterra integro-differential equation
    Imanova, M.
    Mehdiyeva, G.
    Ibrahimov, V.
    World Academy of Science, Engineering and Technology, 2010, 69 : 267 - 270
  • [46] NONLINEAR CONVOLUTION INTEGRO-DIFFERENTIAL EQUATION WITH VARIABLE COEFFICIENT
    Askhabov, Sultan N.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2021, 24 (03) : 848 - 864
  • [47] NUMERICAL METHODS FOR NONLINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS
    FELDSTEI.A
    SOPKA, JR
    SIAM REVIEW, 1969, 11 (01) : 111 - &
  • [48] On the numerical solution of nonlinear systems of Volterra integro-differential equations with delay arguments
    Shakourifar, M.
    Dehghan, M.
    COMPUTING, 2008, 82 (04) : 241 - 260
  • [49] Nonlinear convolution integro-differential equation with variable coefficient
    Sultan N. Askhabov
    Fractional Calculus and Applied Analysis, 2021, 24 : 848 - 864
  • [50] On the numerical solution of nonlinear systems of Volterra integro-differential equations with delay arguments
    M. Shakourifar
    M. Dehghan
    Computing, 2008, 82