On Existence and Numerical Solution of a New Class of Nonlinear Second Degree Integro-Differential Volterra Equation with Convolution Kernel

被引:0
|
作者
Lemita, S. [1 ,2 ]
Guessoumi, M. L. [3 ]
机构
[1] Echahid Cheikh Larbi Tebessi Univ, Dept Math & Comp Sci, Tebessa 12022, Algeria
[2] Univ 8 Mai 1945, Lab Math Appl & Modelisat, Guelma 24000, Algeria
[3] Ecole Normale Super Ouargla, Dept Sci Exact, Ouargla 30000, Algeria
关键词
Volterra equation; integro-differential equation; convolution kernel; Schauder fixed point theorem; Nystr & ouml; m method; INTEGRAL-EQUATION; FREDHOLM;
D O I
10.1134/S1995423924030042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers a new class of nonlinear second degree integro-differential Volterra equation with a convolution kernel. We derive some sufficient conditions to establish the existence and uniqueness of solutions by using Schauder fixed point theorem. Moreover, the Nystr & ouml;m method is applied to obtain the approximate solution of the proposed Volterra equation. A numerical examples are given to validate the adduced results.
引用
收藏
页码:245 / 261
页数:17
相关论文
共 50 条
  • [31] THE NUMERICAL SOLUTION FOR A PARTIAL INTEGRO-DIFFERENTIAL EQUATION WITH A WEAKLY SINGULAR KERNEL
    Yu Zongshan Zeng Youdong (College of Math
    Annals of Differential Equations, 2006, (03) : 418 - 422
  • [32] Second-order numerical method for a neutral Volterra integro-differential equation
    Amirali, Ilhame
    Fedakar, Burcu
    Amiraliyev, Gabil M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 453
  • [33] PERIODIC SOLUTIONS OF A SECOND-ORDER NONLINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATION
    Alymbaev, A. T.
    Kyzy, A. Bapa
    Sharshembieva, F. K.
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2024, 31 (02): : 285 - 297
  • [34] Numerical solution of Volterra integral and integro-differential equations with rapidly vanishing convolution kernels
    F.C. Hoppensteadt
    Z. Jackiewicz
    B. Zubik-Kowal
    BIT Numerical Mathematics, 2007, 47 : 325 - 350
  • [35] Numerical solution of Volterra integral and integro-differential equations with rapidly vanishing convolution kernels
    Hoppensteadt, F. C.
    Jackiewicz, Z.
    Zubik-Kowal, B.
    BIT NUMERICAL MATHEMATICS, 2007, 47 (02) : 325 - 350
  • [36] A new numerical scheme for solving system of Volterra integro-differential equation
    Loh, Jian Rong
    Phang, Chang
    ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (02) : 1117 - 1124
  • [37] An efficient numerical algorithm for solving nonlinear fractional Volterra integro-differential equation
    Xuefei Dai
    Chaoyue Guan
    Jing Niu
    Computational and Applied Mathematics, 2024, 43
  • [38] DIFFERENCE DERIVATIVE FOR AN INTEGRO-DIFFERENTIAL NONLINEAR VOLTERRA EQUATION
    Guebbai, H.
    Lemita, S.
    Segni, S.
    Merchela, W.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2020, 30 (02): : 176 - 188
  • [39] On an Integro-Differential Fractional Nonlinear Volterra–Caputo Equation
    S. Guemar
    H. Guebbai
    S. Lemita
    Numerical Analysis and Applications, 2021, 14 : 316 - 334
  • [40] Analytical and Numerical Approach for a Nonlinear Volterra-Fredholm Integro-differential Equation
    Bounaya, Mohammed Charif
    Lemita, Samir
    Touati, Sami
    Aissaoui, Mohamed Zine
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41