Revealing flow structures in horizontal pipe and biomass combustor using computational fluid dynamics simulation

被引:0
|
作者
Steven, Soen [1 ,2 ]
Hernowo, Pandit [3 ]
Sasongko, Nugroho A. [1 ,4 ]
Soedarsono, Adik A. [5 ]
Wardani, Maya L. D. [1 ]
Otivriyanti, Geby [1 ]
Soekotjo, Ernie S. A. [1 ]
Hidayatullah, Ibnu M. [6 ]
Sophiana, Intan C. [7 ]
Culsum, Neng T. U. [8 ]
Fajri, Imam M. [2 ]
Pasymi, Pasymi [9 ]
Bindar, Yazid [2 ,10 ]
机构
[1] Natl Res & Innovat Agcy BRIN, Res Ctr Sustainable Prod Syst & Life Cycle Assessm, KST BJ Habibie, South Tangerang, Banten, Indonesia
[2] Inst Teknol Bandung, Fac Ind Technol, Biomass Technol Workshop, Sumedang 45363, Indonesia
[3] Univ Bhayangkara Jakarta Raya, Dept Chem Engn, South Jakarta, West Java, Indonesia
[4] Univ Pertahanan Republik Indonesia, Energy Secur Grad Program, Tajur, West Java, Indonesia
[5] Natl Res & Innovat Agcy BRIN, Res Ctr Proc & Mfg Ind Technol, KST BJ Habibie, South Tangerang, Banten, Indonesia
[6] Univ Indonesia, Fac Engn, Res Ctr Biomass Valorizat, Depok, Indonesia
[7] Univ Indonesia, Fac Engn, Dept Chem Engn, Depok, Indonesia
[8] Natl Res & Innovat Agcy BRIN, KST BJ Habibie, Res Ctr Energy Convers & Conservat, South Tangerang, Banten, Indonesia
[9] Univ Bung Hatta, Dept Chem Engn, Padang, Indonesia
[10] Inst Teknol Bandung, Fac Ind Technol, Dept Chem Engn, Bandung, Indonesia
关键词
CFD; combustion; Hagen-Poiseuille; multiphase flow; turbulent; RICE HUSK; PARTICLE-SIZE; TURBULENCE; BIODIESEL; DESIGN;
D O I
10.1002/apj.3137
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Computational fluid dynamics (CFD) is a powerful tool to provide information on detailed turbulent flow in unit processes. For that reason, this study intends to reveal the flow structures in the horizontal pipe and biomass combustor. The simulation was aided by ANSYS Fluent employing standard k$$ k $$-epsilon$$ \upvarepsilon $$ model. The results show that a greater Reynolds number generates more turbulence. The pressure drop inside the pipe is also found steeper for small pipe diameters following Fanning's correlation. The fully developed flow for the laminar regime is found in locations where the ratio of entrance length to pipe diameter complies with Hagen-Poiseuille's rule. The sucking phenomenon in jet flow is also similar to the working principle of ejector. For the biomass combustor, the average combustion temperature is 356-696 degrees C, and the maximum flame temperature is 1587-1697 degrees C. Subsequently, air initially flows through the burner area and then moves to the outlet when enters the combustor chamber. Not so for particle flow, the particle experiences sedimentation in the burner area and then falls as it enters the combustor chamber. This study also convinces that secondary air supply can produce more circulating effects in the combustor.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Simulation of Intermittent Flow Development in a Horizontal Pipe
    Nasrfard, Hamed
    Rahimzadeh, Hassan
    Ahmadpour, Ali
    Amani, Ehsan
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2019, 141 (12):
  • [42] Overview of Computational Fluid Dynamics Simulation of Reactor-Scale Biomass Pyrolysis
    Xiong, Qingang
    Yang, Yang
    Xu, Fei
    Pan, Yaoyu
    Zhang, Jingchao
    Hong, Kun
    Lorenzini, Giulio
    Wang, Shurong
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (04): : 2783 - 2798
  • [43] Fluid Flow Characteristic Simulation of the Original TRIGA 2000 Reactor Design Using Computational Fluid Dynamics Code
    Fiantini, Rosalina
    Umar, Efrizon
    2ND INTERNATIONAL CONFERENCE ON ADVANCES IN NUCLEAR SCIENCE AND ENGINEERING - ICANSE 2009, 2010, 1244 : 215 - 223
  • [44] Experimental and computational investigations of flow dynamics in LPP combustor
    Yan, Y. W.
    Liu, Y. P.
    Liu, Y. C.
    Li, J. H.
    AERONAUTICAL JOURNAL, 2017, 121 (1240): : 790 - 802
  • [45] Numerical simulation of transient temperature and velocity profiles in a horizontal can during sterilization using computational fluid dynamics
    Ghani, AGA
    Farid, MM
    Chen, XD
    JOURNAL OF FOOD ENGINEERING, 2002, 51 (01) : 77 - 83
  • [46] Prediction of Separation Length of Turbulent Multiphase Flow Using Radiotracer and Computational Fluid Dynamics Simulation
    Sugiharto, S.
    Kurniadi, R.
    Abidin, Z.
    Stegowski, Z.
    Furman, L.
    ATOM INDONESIA, 2013, 39 (01) : 32 - 39
  • [47] Flow and dispersion simulation using Computational Fluid Dynamics: A Case Study for EduCity in Iskandar Malaysia
    Ng, Jo-Han
    Navarednam, Shawn
    Wong, Kang Yao
    Chong, Cheng Tung
    INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY AND GREEN TECHNOLOGY 2018, 2019, 268
  • [48] Hydrodynamic Simulation and Analysis Using Computational Fluid Dynamics: Electrochemical Reactors and Redox Flow Batteries
    Meena, Ram Raj
    Kumar, Sushil
    Soni, Pramod
    CHEMBIOENG REVIEWS, 2023, 10 (05) : 670 - 683
  • [49] Simulation of Cold Flow FCC Stripper Hydrodynamics at Small Scale Using Computational Fluid Dynamics
    McKeen, Tim
    Pugsley, Todd S.
    INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING, 2003, 1
  • [50] Simulation of cold flow FCC stripper hydrodynamics at small scale using computational fluid dynamics
    Mckeen, Tim
    Pugsley, Todd S.
    International Journal of Chemical Reactor Engineering, 2002, 1 (01)