Revealing flow structures in horizontal pipe and biomass combustor using computational fluid dynamics simulation

被引:0
|
作者
Steven, Soen [1 ,2 ]
Hernowo, Pandit [3 ]
Sasongko, Nugroho A. [1 ,4 ]
Soedarsono, Adik A. [5 ]
Wardani, Maya L. D. [1 ]
Otivriyanti, Geby [1 ]
Soekotjo, Ernie S. A. [1 ]
Hidayatullah, Ibnu M. [6 ]
Sophiana, Intan C. [7 ]
Culsum, Neng T. U. [8 ]
Fajri, Imam M. [2 ]
Pasymi, Pasymi [9 ]
Bindar, Yazid [2 ,10 ]
机构
[1] Natl Res & Innovat Agcy BRIN, Res Ctr Sustainable Prod Syst & Life Cycle Assessm, KST BJ Habibie, South Tangerang, Banten, Indonesia
[2] Inst Teknol Bandung, Fac Ind Technol, Biomass Technol Workshop, Sumedang 45363, Indonesia
[3] Univ Bhayangkara Jakarta Raya, Dept Chem Engn, South Jakarta, West Java, Indonesia
[4] Univ Pertahanan Republik Indonesia, Energy Secur Grad Program, Tajur, West Java, Indonesia
[5] Natl Res & Innovat Agcy BRIN, Res Ctr Proc & Mfg Ind Technol, KST BJ Habibie, South Tangerang, Banten, Indonesia
[6] Univ Indonesia, Fac Engn, Res Ctr Biomass Valorizat, Depok, Indonesia
[7] Univ Indonesia, Fac Engn, Dept Chem Engn, Depok, Indonesia
[8] Natl Res & Innovat Agcy BRIN, KST BJ Habibie, Res Ctr Energy Convers & Conservat, South Tangerang, Banten, Indonesia
[9] Univ Bung Hatta, Dept Chem Engn, Padang, Indonesia
[10] Inst Teknol Bandung, Fac Ind Technol, Dept Chem Engn, Bandung, Indonesia
关键词
CFD; combustion; Hagen-Poiseuille; multiphase flow; turbulent; RICE HUSK; PARTICLE-SIZE; TURBULENCE; BIODIESEL; DESIGN;
D O I
10.1002/apj.3137
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Computational fluid dynamics (CFD) is a powerful tool to provide information on detailed turbulent flow in unit processes. For that reason, this study intends to reveal the flow structures in the horizontal pipe and biomass combustor. The simulation was aided by ANSYS Fluent employing standard k$$ k $$-epsilon$$ \upvarepsilon $$ model. The results show that a greater Reynolds number generates more turbulence. The pressure drop inside the pipe is also found steeper for small pipe diameters following Fanning's correlation. The fully developed flow for the laminar regime is found in locations where the ratio of entrance length to pipe diameter complies with Hagen-Poiseuille's rule. The sucking phenomenon in jet flow is also similar to the working principle of ejector. For the biomass combustor, the average combustion temperature is 356-696 degrees C, and the maximum flame temperature is 1587-1697 degrees C. Subsequently, air initially flows through the burner area and then moves to the outlet when enters the combustor chamber. Not so for particle flow, the particle experiences sedimentation in the burner area and then falls as it enters the combustor chamber. This study also convinces that secondary air supply can produce more circulating effects in the combustor.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] A review on computational fluid dynamics modeling and simulation of horizontal axis hydrokinetic turbines
    S. Laín
    L. T. Contreras
    O. López
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41
  • [32] Computational fluid dynamics simulation for tuned liquid column dampers in horizontal motion
    Chang, Cheng-Hsin
    WIND AND STRUCTURES, 2011, 14 (05) : 435 - 447
  • [33] Computational Fluid Dynamics Modelling and Simulation of an Inclined Horizontal Axis Hydrokinetic Turbine
    Tatiana Contreras, Leidy
    Dario Lopez, Omar
    Lain, Santiago
    ENERGIES, 2018, 11 (11)
  • [34] Experimental Study and Computational Fluid Dynamics Modeling of Pulp Suspensions Flow in a Pipe
    Cotas, Carla
    Branco, Bruno
    Asendrych, Dariusz
    Garcia, Fernando
    Faia, Pedro
    Rasteiro, Maria Graca
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2017, 139 (07):
  • [35] Computational dynamics of unsteady flow of a variable viscosity reactive fluid in a porous pipe
    Chinyoka, T.
    Makinde, O. D.
    MECHANICS RESEARCH COMMUNICATIONS, 2010, 37 (03) : 347 - 353
  • [36] Numerical simulation of lignocellulosic biomass gasification in concentric tube entrained flow gasifier through computational fluid dynamics
    Maitlo, Ghulamullah
    Unar, Imran Nazir
    Mahar, Rasool Bux
    Brohi, Khan Mohammad
    ENERGY EXPLORATION & EXPLOITATION, 2019, 37 (03) : 1073 - 1097
  • [37] Investigation of particle flow effects in slug flow crystallization using the multiscale computational fluid dynamics simulation
    Kim, Shin Hyuk
    Hong, Moo Sun
    Braatz, Richard D.
    CHEMICAL ENGINEERING SCIENCE, 2024, 297
  • [38] NUMERICAL SIMULATION OF EROSION USING COMPUTATIONAL FLUID DYNAMICS
    Grewal, H. S.
    Singh, H.
    Agrawal, Anupam
    CFD MODELING AND SIMULATION IN MATERIALS PROCESSING, 2012, : 89 - 96
  • [39] Investigation of sand transport in an undulated pipe using computational fluid dynamics
    Tebowei, Roland
    Hossain, Mamdud
    Islam, Sheikh Zahidul
    Droubi, Mohamad Ghazi
    Oluyemi, Gbenga
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2018, 162 : 747 - 762
  • [40] The influence of relative fluid depth on initial bedform dynamics in closed, horizontal pipe flow
    Rice, Hugh P.
    Fairweather, Michael
    Hunter, Timothy N.
    Peakall, Jeffrey
    Biggs, Simon R.
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2017, 93 : 1 - 16