Harnessing topological machine learning in Raman spectroscopy: Perspectives for Alzheimer's disease detection via cerebrospinal fluid analysis

被引:0
|
作者
Conti, Francesco [1 ,2 ]
Banchelli, Martina [3 ]
Bessi, Valentina [4 ]
Cecchi, Cristina [5 ]
Chiti, Fabrizio [5 ]
Colantonio, Sara [1 ]
D'Andrea, Cristiano [3 ]
de Angelis, Marella [3 ]
Moroni, Davide [1 ]
Nacmias, Benedetta [4 ,6 ]
Pascali, Maria Antonietta [1 ]
Sorbi, Sandro [4 ,6 ]
Matteini, Paolo [3 ]
机构
[1] Italian Natl Res Council, Inst Informat Sci & Technol A Faedo, Via G Moruzzi 1, I-56124 Pisa, PI, Italy
[2] Univ Pisa, Dept Math, Largo B Pontecorvo 5, I-56126 Pisa, Italy
[3] CNR, Inst Appl Phys N Carrara, Via Madonna Piano 10, I-50019 Sesto Fiorentino, FI, Italy
[4] Univ Florence, Dept Neurosci Psychol Drug Res & Child Hlth, Viale Pieraccini 6, I-50139 Florence, FI, Italy
[5] Univ Florence, Dept Expt & Clin Biomed Sci, Viale Morgagni 50, I-50134 Florence, FI, Italy
[6] IRCCS Fdn Don Carlo Gnocchi, Via Scandicci 269, I-50143 Florence, FI, Italy
关键词
Raman spectroscopy; Cerebrospinal fluid; Alzheimer's disease; Persistent homology; Topological data analysis; Topological machine learning; DIAGNOSIS;
D O I
10.1016/j.jfranklin.2024.107249
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The cerebrospinal fluid of 21 subjects who received a clinical diagnosis of Alzheimer's disease (AD) as well as of 22 pathological controls has been collected and analysed by Raman spectroscopy (RS). We investigated whether the Raman spectra could be used to distinguish AD from controls, after a preprocessing procedure. We applied machine learning to a set of topological descriptors extracted from the spectra, achieving a high classification accuracy of 86%. Our experimentation indicates that RS and topological analysis may be a reliable and effective combination to confirm or disprove a clinical diagnosis of Alzheimer's disease. The following steps will aim at leveraging the intrinsic interpretability of the topological data analysis to characterize the AD subtypes, e.g. by identifying the bands of the Raman spectrum relevant for AD detection, possibly increasing and/or confirming the knowledge about the precise molecular events and biological pathways behind the Alzheimer's disease.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Machine learning technique for early detection of Alzheimer's disease
    Kumari, Rashmi
    Nigam, Akriti
    Pushkar, Shashank
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2020, 26 (12): : 3935 - 3944
  • [22] Machine Learning Profiling of Alzheimer's Disease Patients Based on Current Cerebrospinal Fluid Markers and Iron Content in Biofluids
    Ficiara, Eleonora
    Boschi, Silvia
    Ansari, Shoeb
    D'Agata, Federico
    Abollino, Ornella
    Caroppo, Paola
    Di Fede, Giuseppe
    Indaco, Antonio
    Rainero, Innocenzo
    Guiot, Caterina
    FRONTIERS IN AGING NEUROSCIENCE, 2021, 13
  • [23] Sleep-related variables and quantitative polysomnographic signal features for predicting core Alzheimer's disease cerebrospinal fluid biomarkers via machine learning
    Michela Gaeta, Anna
    Quijada Lopez, Maria
    Barbe Illa, Ferran
    Sanchez-de-la-Torre, Manuel
    Munoz Barrutia, Arrate
    Pinol-Ripoll, Gerard
    JOURNAL OF SLEEP RESEARCH, 2024, 33
  • [24] Predictive Diagnostic Analysis for Early Detection of Alzheimer's disease Using Machine Learning
    Veena, K. C.
    Priya, R. Kavi
    Sumathi, D.
    JOURNAL OF ALGEBRAIC STATISTICS, 2022, 13 (01) : 586 - 592
  • [25] Surface-Enhanced Raman Spectroscopy for Early Detection of Alzheimer's Disease
    Etxebarria-Elezgarai, Jaione
    Lopez, Eneko
    Garcia-Sebastian, Maite
    Altuna, Miren
    Ecay-Torres, Mirian
    Estanga, Ainara
    Tainta, Mikel
    Lopez, Carolina
    Martinez-Lage, Pablo
    Seifert, Andreas
    2024 INTERNATIONAL CONFERENCE ON OPTICAL MEMS AND NANOPHOTONICS, OMN, 2024,
  • [26] Alzheimer's Disease Detection Using Machine Learning and Deep Learning Algorithms
    Sentamilselvan, K.
    Swetha, J.
    Sujitha, M.
    Vigasini, R.
    INNOVATIONS IN BIO-INSPIRED COMPUTING AND APPLICATIONS, IBICA 2021, 2022, 419 : 296 - 306
  • [27] Detection of tau proteins in Alzheimer's disease cerebrospinal fluid by a sensitive ELISA.
    Lei, W
    Yuan, JM
    Hao, HJ
    JOURNAL OF NEUROCHEMISTRY, 1998, 70 : S49 - S49
  • [28] Cerebrospinal fluid analysis in Alzheimer's disease: technical issues and future developments
    Lista, Simone
    Zetterberg, Henrik
    Dubois, Bruno
    Blennow, Kaj
    Hampel, Harald
    JOURNAL OF NEUROLOGY, 2014, 261 (06) : 1234 - 1243
  • [29] Fluorescence burst analysis of cerebrospinal fluid as a diagnostic tool for Alzheimer's disease
    Bark, N
    Rigler, R
    Terenius, L
    Tjernberg, L
    NEUROBIOLOGY OF AGING, 2002, 23 (01) : S377 - S377
  • [30] Proteomic Analysis of Cerebrospinal Fluid in Alzheimer's Disease: Wanted Dead or Alive
    Olah, Zita
    Kalman, Janos
    Toth, Melinda E.
    Zvara, Agnes
    Santha, Miklos
    Ivitz, Eszter
    Janka, Zoltan
    Pakaski, Magdolna
    JOURNAL OF ALZHEIMERS DISEASE, 2015, 44 (04) : 1303 - 1312