Predictive Diagnostic Analysis for Early Detection of Alzheimer's disease Using Machine Learning

被引:0
|
作者
Veena, K. C. [1 ]
Priya, R. Kavi [1 ]
Sumathi, D. [1 ]
机构
[1] Kuppam Engn Coll, Dept Comp Sci & Engn, Kuppam, India
关键词
Alzheimer's disease prediction; Heterogeneous; Random forest; Data mining; Early diagnosis etc;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The accurate diagnosis of Alzheimer's disease (AD) plays an important role in patient treatment, especially at the disease's early stages, because risk awareness allows the patients to undergo preventive measures even before the occurrence of irreversible brain damage. Although many recent studies have used computers to diagnose AD, most machine detection methods are limited by congenital observations. Alzheimer's, an irreparable brain disease, impairs thinking and memory while the aggregate mind size shrinks which at last prompts demise. Early diagnosis of AD is essential for the progress of more prevailing treatments. Machine learning (ML), a branch of artificial intelligence, employs a variety of probabilistic and optimization techniques that permits PCs to gain from vast and complex datasets. As a result, researchers focus on using machine learning frequently for diagnosis of early stages of AD. This paper presents a analysis and critical evaluation of the recent work done for the early detection of AD using ML techniques. Several methods achieved promising prediction accuracies, however they were evaluated on different pathologically unproven data sets from different imaging modalities making it difficult to make a fair comparison among them. Moreover, many other factors such as pre-processing, the number of important attributes for feature selection, class imbalance distinctively affect the assessment of the prediction accuracy. To overcome these limitations, a model is proposed which comprise of initial pre-processing step followed by imperative attributes selection and classification is achieved using association rule mining. Furthermore, this proposed model based approach gives the right direction for research in early diagnosis of AD and has the potential to distinguish AD from healthy controls.
引用
收藏
页码:586 / 592
页数:7
相关论文
共 50 条
  • [1] Predictive Diagnosis of Alzheimer's Disease using Machine Learning
    Vuddanti, Sowjanya
    Yasmin, Neeha
    Dishasri, L.
    Somanath, Neela
    Prasanth, Y.
    2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE COMPUTING AND SMART SYSTEMS, ICSCSS 2024, 2024, : 928 - 934
  • [2] Machine learning technique for early detection of Alzheimer’s disease
    Rashmi Kumari
    Akriti Nigam
    Shashank Pushkar
    Microsystem Technologies, 2020, 26 : 3935 - 3944
  • [3] Machine learning technique for early detection of Alzheimer's disease
    Kumari, Rashmi
    Nigam, Akriti
    Pushkar, Shashank
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2020, 26 (12): : 3935 - 3944
  • [4] Detection and analysis of Alzheimer's disease using various machine learning algorithms
    Kishore, P.
    Kumari, Usha
    Kumar, M. N. V. S. S.
    Pavani, T.
    MATERIALS TODAY-PROCEEDINGS, 2021, 45 : 1502 - 1508
  • [5] Early diagnosis of Alzheimer's disease using machine learning: a multi-diagnostic, generalizable approach
    Diogo, Vasco Sa
    Ferreira, Hugo Alexandre
    Prata, Diana
    ALZHEIMERS RESEARCH & THERAPY, 2022, 14 (01)
  • [6] Early diagnosis of Alzheimer’s disease using machine learning: a multi-diagnostic, generalizable approach
    Vasco Sá Diogo
    Hugo Alexandre Ferreira
    Diana Prata
    Alzheimer's Research & Therapy, 14
  • [7] Early Alzheimer’s Disease Detection Using Deep Learning
    Lokesh K.
    Challa N.P.
    Satwik A.S.
    Kiran J.C.
    Rao N.K.
    Naseeba B.
    EAI Endorsed Transactions on Pervasive Health and Technology, 2023, 9 (01)
  • [8] Alzheimer's Disease Detection Using Machine Learning and Deep Learning Algorithms
    Sentamilselvan, K.
    Swetha, J.
    Sujitha, M.
    Vigasini, R.
    INNOVATIONS IN BIO-INSPIRED COMPUTING AND APPLICATIONS, IBICA 2021, 2022, 419 : 296 - 306
  • [9] Detection of Alzheimer Disease Using Machine Learning
    Bhardwaj, Sumit
    Kaushik, Tarun
    Bisht, Manthan
    Gupta, Punit
    Mundra, Shikha
    SMART SYSTEMS: INNOVATIONS IN COMPUTING (SSIC 2021), 2022, 235 : 443 - 450
  • [10] Assessing the Interpretability of Machine Learning Models in Early Detection of Alzheimer's Disease
    Haddada, Karim
    Ibn Khedher, Mohamed
    Jemai, Olfa
    Khedher, Sarra Iben
    El-Yaeoubi, Mounim A.
    2024 16TH INTERNATIONAL CONFERENCE ON HUMAN SYSTEM INTERACTION, HSI 2024, 2024,