A physics-informed neural network framework for multi-physics coupling microfluidic problems

被引:1
|
作者
Sun, Runze [1 ,2 ]
Jeong, Hyogu [2 ]
Zhao, Jiachen [2 ]
Gou, Yixing [1 ]
Sauret, Emilie [2 ]
Li, Zirui [1 ]
Gu, Yuantong [2 ]
机构
[1] Hebei Univ Technol, Sch Mech Engn, Tianjin, Peoples R China
[2] Queensland Univ Technol, Sch Mech Med & Proc Engn, Brisbane, Qld 4000, Australia
基金
中国国家自然科学基金;
关键词
Microfluidic; Electrokinetic; Physics informed neural network; Deep learning; Electroosmotic flow; MG2+/LI+ RATIO BRINES; CONCENTRATION POLARIZATION; NUMERICAL-SIMULATION; FLOW; EXTRACTION;
D O I
10.1016/j.compfluid.2024.106421
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Microfluidic systems have various scientific and industrial applications, providing a powerful means to manipulate fluids and particles on a small scale. As a crucial method to underlying mechanisms and guiding the design of microfluidic devices, traditional numerical methods such as the Finite Element Method (FEM) simulating microfluidic systems are limited by the computational cost and mesh generating of resolving the smaller spatiotemporal features. Recently, a Physics-informed neural network (PINN) was introduced as a powerful numerical tool for solving partial differential equations (PDEs). PINN simplifies discretizing computational domains, ensuring accurate results and significantly improving computational efficiency after training. Therefore, we propose a PINN-based modeling framework to solve the governing equations of electrokinetic microfluidic systems. The neural networks, designed to respect the governing physics law such as Nernst-Planck, Poisson, and Navier-Stokes (NPN) equations defined by PDEs, are trained to approximate accurate solutions without requiring any labeled data. Several typical electrokinetic problems, such as Electromigration, Ion concentration polarization (ICP), and Electroosmotic flow (EOF), were investigated in this study. Notably, the findings demonstrate the exceptional capacity of the PINN framework to deliver high-precision outcomes for highly coupled multi-physics problems, particularly highlighted by the EOF case. When using 20 x 10 sample points to train the model (the same mesh nodes used for FEM), the relative error of EOF velocity from the PINN is similar to 0.02 %, whereas the relative error of the FEM is similar to 1.23 %. In addition, PINNs demonstrate excellent interpolation capability, the relative error of the EOF velocity decreases slightly at the interpolation points compared to training points, approximately 0.0001 %. More importantly, in simulating strongly nonlinear problems such as the ICP case, PINNs exhibit a unique advantage as they can provide accurate solutions with sparse sample points, whereas FEM fails to produce correct physical results using the same mesh nodes. Although the training time for PINN (100-200 min) is higher than the FEM computational time, the ability of PINN to achieve high accuracy results on sparse sample points, strong capability to fit nonlinear problems highlights its potential for reducing computational resources. We also demonstrate the ability of PINN to solve inverse problems in microfluidic systems and use transfer learning to accelerate PINN training for various species parameter settings. The numerical results demonstrate that the PINN model shows promising advantages in achieving high-accuracy solutions, modeling strong nolinear problems, strong interpolation capability, and inferring unknown parameters in simulating multi-physics coupling microfluidic systems.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Physics-Informed Neural Networks for Inverse Problems in Structural Dynamics
    Teloli, Rafael de O.
    Bigot, Mael
    Coelho, Lucas
    Ramasso, Emmanuel
    Tittarelli, Roberta
    Le Moal, Patrice
    Ouisse, Morvan
    NONDESTRUCTIVE CHARACTERIZATION AND MONITORING OF ADVANCED MATERIALS, AEROSPACE, CIVIL INFRASTRUCTURE, AND TRANSPORTATION XVIII, 2024, 12950
  • [42] Physics-Informed Neural Networks for Solving Parametric Magnetostatic Problems
    Beltran-Pulido, Andres
    Bilionis, Ilias
    Aliprantis, Dionysios
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2022, 37 (04) : 2678 - 2689
  • [43] A generic physics-informed neural network-based framework for reliability assessment of multi-state systems
    Zhou, Taotao
    Zhang, Xiaoge
    Droguett, Enrique Lopez
    Mosleh, Ali
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 229
  • [44] A multi-physics informed antenna sensor model through the deep neural network regression
    Cho, Chunhee
    LeThanh Long
    Park, JeeWoong
    Jang, Sung-Hwan
    SMART STRUCTURES AND SYSTEMS, 2021, 28 (03) : 355 - 362
  • [45] Extrapolation of Hydrodynamic Pressure in Lubricated Contacts: A Novel Multi-Case Physics-Informed Neural Network Framework
    Brumand-Poor, Faras
    Bauer, Niklas
    Plueckhahn, Nils
    Thebelt, Matteo
    Woyda, Silas
    Schmitz, Katharina
    LUBRICANTS, 2024, 12 (04)
  • [46] An enhanced hybrid adaptive physics-informed neural network for forward and inverse PDE problems
    Luo, Kuang
    Liao, Shaolin
    Guan, Zhong
    Liu, Baiquan
    APPLIED INTELLIGENCE, 2025, 55 (03)
  • [47] A stepwise physics-informed neural network for solving large deformation problems of hypoelastic materials
    Luo, Zikun
    Wang, Lei
    Lu, Mengkai
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2023, 124 (20) : 4453 - 4472
  • [48] PHYSICS-INFORMED NEURAL NETWORK WITH NUMERICAL DIFFERENTIATION FOR MODELLING COMPLEX FLUID DYNAMIC PROBLEMS
    Ha, Dao My
    Pao-Hsiung, Chiu
    Cheng, Wong Jian
    Chun, Ooi Chin
    PROCEEDINGS OF ASME 2022 41ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2022, VOL 7, 2022,
  • [49] Physics-informed Neural Implicit Flow neural network for parametric PDEs
    Xiang, Zixue
    Peng, Wei
    Yao, Wen
    Liu, Xu
    Zhang, Xiaoya
    NEURAL NETWORKS, 2025, 185
  • [50] PHYSICS-INFORMED NEURAL NETWORK FOR INVERSE HEAT CONDUCTION PROBLEM
    Qian, Weijia
    Hui, Xin
    Wang, Bosen
    Zhang, Zongwei
    Lin, Yuzhen
    Yang, Siheng
    HEAT TRANSFER RESEARCH, 2023, 54 (04) : 65 - 76