Modelling forest fire dynamics using conditional variational autoencoders

被引:0
|
作者
Ribeiro, Tiago Filipe Rodrigues [1 ]
de Silva, Fernando Jose Mateus da [1 ]
Costa, Rogerio Luis de Carvalho [1 ]
机构
[1] Polytech Inst Leiria, Comp Sci & Commun Res Ctr CI, ESTG, Bldg C-Campus 2,Morro Lena Alto Vieiro, P-2411901 Leiria, Portugal
关键词
Spatiotemporal data; Deep learning; Region interpolation; Conditional variational autoencoders; Forecasting; OBJECTS;
D O I
10.1007/s10796-024-10507-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Forest fires have far-reaching consequences, threatening human life, economic stability, and the environment. Understanding the dynamics of forest fires is crucial, especially in high-incidence regions. In this work, we apply deep networks to simulate the spatiotemporal progression of the area burnt in a forest fire. We tackle the region interpolation problem challenge by using a Conditional Variational Autoencoder (CVAE) model and generate in-between representations on the evolution of the burnt area. We also apply a CVAE model to forecast the progression of fire propagation, estimating the burnt area at distinct horizons and propagation stages. We evaluate our approach against other established techniques using real-world data. The results demonstrate that our method is competitive in geometric similarity metrics and exhibits superior temporal consistency for in-between representation generation. In the context of burnt area forecasting, our approach achieves scores of 90% for similarity and 99% for temporal consistency. These findings suggest that CVAE models may be a viable alternative for modeling the spatiotemporal evolution of 2D moving regions of forest fire evolution.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Non-deterministic and emotional chatting machine: learning emotional conversation generation using conditional variational autoencoders
    Yao, Kaichun
    Zhang, Libo
    Luo, Tiejian
    Du, Dawei
    Wu, Yanjun
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (11): : 5581 - 5589
  • [42] Modeling and Transforming Speech using Variational Autoencoders
    Blaauw, Merlijn
    Bonada, Jordi
    17TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2016), VOLS 1-5: UNDERSTANDING SPEECH PROCESSING IN HUMANS AND MACHINES, 2016, : 1770 - 1774
  • [43] Non-deterministic and emotional chatting machine: learning emotional conversation generation using conditional variational autoencoders
    Kaichun Yao
    Libo Zhang
    Tiejian Luo
    Dawei Du
    Yanjun Wu
    Neural Computing and Applications, 2021, 33 : 5581 - 5589
  • [44] Generating various airfoils with required lift coefficients by combining NACA and Joukowski airfoils using conditional variational autoencoders
    Yonekura, Kazuo
    Wada, Kazunari
    Suzuki, Katsuyuki
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 108
  • [45] Classification of Arcobacter species using variational autoencoders
    Patsekin, Valery
    On, Stephen
    Sturgis, Jennifer
    Bae, Euiwon
    Rajwa, Bartek
    Patsekin, Aleksandr
    Robinson, J. Paul
    SENSING FOR AGRICULTURE AND FOOD QUALITY AND SAFETY XI, 2019, 11016
  • [46] Link Activation Using Variational Graph Autoencoders
    Jamshidiha, Saeed
    Pourahmadi, Vahid
    Mohammadi, Abbas
    Bennis, Mehdi
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (07) : 2358 - 2361
  • [47] Modelling forest fire spread using hexagonal cellular automata
    Encinas, L. Hernandez
    White, S. Hoya
    del Rey, A. Martin
    Sanchez, G. Rodriguez
    APPLIED MATHEMATICAL MODELLING, 2007, 31 (06) : 1213 - 1227
  • [48] β-Variational autoencoders and transformers for reduced-order modelling of fluid flows
    Alberto Solera-Rico
    Carlos Sanmiguel Vila
    Miguel Gómez-López
    Yuning Wang
    Abdulrahman Almashjary
    Scott T. M. Dawson
    Ricardo Vinuesa
    Nature Communications, 15
  • [49] β-Variational autoencoders and transformers for reduced-order modelling of fluid flows
    Solera-Rico, Alberto
    Sanmiguel Vila, Carlos
    Gomez-Lopez, Miguel
    Wang, Yuning
    Almashjary, Abdulrahman
    Dawson, Scott T. M.
    Vinuesa, Ricardo
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [50] Modelling multivariate spatio-temporal data with identifiable variational autoencoders
    Sipila, Mika
    Cappello, Claudia
    De Iaco, Sandra
    Nordhausen, Klaus
    Taskinen, Sara
    NEURAL NETWORKS, 2025, 181