Modelling forest fire dynamics using conditional variational autoencoders

被引:0
|
作者
Ribeiro, Tiago Filipe Rodrigues [1 ]
de Silva, Fernando Jose Mateus da [1 ]
Costa, Rogerio Luis de Carvalho [1 ]
机构
[1] Polytech Inst Leiria, Comp Sci & Commun Res Ctr CI, ESTG, Bldg C-Campus 2,Morro Lena Alto Vieiro, P-2411901 Leiria, Portugal
关键词
Spatiotemporal data; Deep learning; Region interpolation; Conditional variational autoencoders; Forecasting; OBJECTS;
D O I
10.1007/s10796-024-10507-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Forest fires have far-reaching consequences, threatening human life, economic stability, and the environment. Understanding the dynamics of forest fires is crucial, especially in high-incidence regions. In this work, we apply deep networks to simulate the spatiotemporal progression of the area burnt in a forest fire. We tackle the region interpolation problem challenge by using a Conditional Variational Autoencoder (CVAE) model and generate in-between representations on the evolution of the burnt area. We also apply a CVAE model to forecast the progression of fire propagation, estimating the burnt area at distinct horizons and propagation stages. We evaluate our approach against other established techniques using real-world data. The results demonstrate that our method is competitive in geometric similarity metrics and exhibits superior temporal consistency for in-between representation generation. In the context of burnt area forecasting, our approach achieves scores of 90% for similarity and 99% for temporal consistency. These findings suggest that CVAE models may be a viable alternative for modeling the spatiotemporal evolution of 2D moving regions of forest fire evolution.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] KilonovaNet: Surrogate models of kilonova spectra with conditional variational autoencoders
    Lukosiute, K.
    Raaijmakers, G.
    Doctor, Z.
    Soares-Santos, M.
    Nord, B.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 516 (01) : 1137 - 1148
  • [22] Conditional Variational Autoencoders for Hierarchical B-frame Coding
    Gao, Zong-Lin
    Chen, Cheng-Wei
    Yao, Yi-Chen
    Ho, Cheng-Yuan
    Peng, Wen-Hsiao
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [23] Learning Discourse-level Diversity for Neural Dialog Models using Conditional Variational Autoencoders
    Zhao, Tiancheng
    Zhao, Ran
    Eskenazi, Maxine
    PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, 2017, : 654 - 664
  • [24] Robust Haze and Thin Cloud Removal via Conditional Variational Autoencoders
    Ding, Haidong
    Xie, Fengying
    Qiu, Linwei
    Zhang, Xiaozhe
    Shi, Zhenwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 16
  • [25] Modeling conditional distributions of neural and behavioral data with masked variational autoencoders
    Schulz, Auguste
    Vetter, Julius
    Gao, Richard
    Morales, Daniel
    Lobato-Rios, Victor
    Ramdya, Pavan
    Goncalves, Pedro J.
    Macke, Jakob H.
    CELL REPORTS, 2025, 44 (03):
  • [26] SPEECH DEREVERBERATION USING VARIATIONAL AUTOENCODERS
    Baby, Deepak
    Bourlard, Herve
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 5784 - 5788
  • [27] The Use of Conditional Variational Autoencoders for Simulation of EAS Images from IACTs
    Kryukov, A. P.
    Polyakov, S. P.
    Vlaskina, A. A.
    Gres, E. O.
    Demichev, A. P.
    Dubenskaya, Yu. Yu.
    Zhurov, D. P.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2023, 78 (SUPPL 1) : S37 - S44
  • [28] The Use of Conditional Variational Autoencoders for Simulation of EAS Images from IACTs
    A. P. Kryukov
    S. P. Polyakov
    A. A. Vlaskina
    E. O. Gres
    A. P. Demichev
    Yu. Yu. Dubenskaya
    D. P. Zhurov
    Moscow University Physics Bulletin, 2023, 78 : S37 - S44
  • [29] Energy disaggregation using variational autoencoders
    Langevin, Antoine
    Carbonneau, Marc-Andre
    Cheriet, Mohamed
    Gagnon, Ghyslain
    ENERGY AND BUILDINGS, 2022, 254
  • [30] Towards Realistic 3D Ultrasound Synthesis: Deformable Augmentation using Conditional Variational Autoencoders
    Wulff, Daniel
    Dohnke, Timoll
    Nguyen, Ngoc Thinh
    Ernst, Floris
    2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS, 2023, : 821 - 826