VAEAT: Variational AutoeEncoder with adversarial training for multivariate time series anomaly detection

被引:1
|
作者
He, Sheng [1 ]
Du, Mingjing [1 ]
Jiang, Xiang [1 ]
Zhang, Wenbin [1 ,2 ]
Wang, Congyu [1 ]
机构
[1] Jiangsu Normal Univ, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金;
关键词
Multivariate time series; Anomaly detection; Variational autoencoder; Adversarial training;
D O I
10.1016/j.ins.2024.120852
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
High labor costs and the requirement for significant domain expertise often result in a lack of anomaly labels in most time series. Consequently, employing unsupervised methods becomes critical for practical industrial applications. However, prevailing reconstruction-based anomaly detection algorithms encounter challenges in capturing intricate underlying correlations and temporal dependencies in time series. This study introduces an unsupervised anomaly detection model called Variational AutoeEncoder with Adversarial Training for Multivariate Time Series Anomaly Detection (VAEAT). Its fundamental concept involves adopting a two-phase training strategy to improve anomaly detection precision through adversarial reconstruction of raw data. In the first phase, the model reconstructs raw data to extract its basic features by training two enhanced variational autoencoders (VAEs) that incorporate both the long short -term memory (LSTM) network and the attention mechanism in their common encoder. In the second phase, the model refines reconstructed data to optimize the reconstruction quality. In this manner, this two-phase VAE model effectively captures intricate underlying correlation and temporal dependencies. A large number of experiments are conducted to evaluate the performance on five publicly available datasets, and experimental results illustrate that VAEAT exhibits robust performance and effective anomaly detection capabilities. The source code of the proposed VAEAT can be available at https://github .com /Du -Team /VAEAT.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] USAD : UnSupervised Anomaly Detection on Multivariate Time Series
    Audibert, Julien
    Michiardi, Pietro
    Guyard, Frederic
    Marti, Sebastien
    Zuluaga, Maria A.
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 3395 - 3404
  • [42] Rethinking Robust Multivariate Time Series Anomaly Detection: A Hierarchical Spatio-Temporal Variational Perspective
    Zhang, Xiao
    Xu, Shuqing
    Chen, Huashan
    Chen, Zekai
    Zhuang, Fuzhen
    Xiong, Hui
    Yu, Dongxiao
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (12) : 9136 - 9149
  • [43] Steps Towards Continual Learning in Multivariate Time-Series Anomaly Detection using Variational Autoencoders
    Garcia Gonzalez, Gaston
    Casas, Pedro
    Fernandez, A.
    Gomez, G.
    PROCEEDINGS OF THE 2022 22ND ACM INTERNET MEASUREMENT CONFERENCE, IMC 2022, 2022, : 774 - 775
  • [44] Variational Graph Attention Networks With Self-Supervised Learning for Multivariate Time Series Anomaly Detection
    Gao, Yu
    Qi, Jin
    Ye, Hongjiang
    Sun, Ying
    Hu, Xiaoxuan
    Dong, Zhenjiang
    Sun, Yanfei
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [45] TAnoGAN: Time Series Anomaly Detection with Generative Adversarial Networks
    Bashar, Md Abul
    Nayak, Richi
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 1778 - 1785
  • [46] GAN-Based Anomaly Detection for Multivariate Time Series Using Polluted Training Set
    Du, Bowen
    Sun, Xuanxuan
    Ye, Junchen
    Cheng, Ke
    Wang, Jingyuan
    Sun, Leilei
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (12) : 12208 - 12219
  • [47] Improved Variational Autoencoder Anomaly Detection in Time Series Data
    Yokkampon, Umaporn
    Chumkamon, Sakmongkon
    Mowshowitz, Abbe
    Fujisawa, Ryusuke
    Hayashi, Eiji
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 82 - 87
  • [48] DAEMON: Unsupervised Anomaly Detection and Interpretation for Multivariate Time Series
    Chen, Xuanhao
    Deng, Liwei
    Huang, Feiteng
    Zhang, Chengwei
    Zhang, Zongquan
    Zhao, Yan
    Zheng, Kai
    2021 IEEE 37TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2021), 2021, : 2225 - 2230
  • [49] Multivariate Time Series Anomaly Detection Method Based on mTranAD
    Zhang, Chuanlei
    Li, Yicong
    Li, Jie
    Li, Guixi
    Ma, Hui
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT IV, 2023, 14089 : 52 - 63
  • [50] Multivariate Time Series Anomaly Detection with Few Positive Samples
    Xue, Feng
    Yan, Weizhong
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,