VAEAT: Variational AutoeEncoder with adversarial training for multivariate time series anomaly detection

被引:1
|
作者
He, Sheng [1 ]
Du, Mingjing [1 ]
Jiang, Xiang [1 ]
Zhang, Wenbin [1 ,2 ]
Wang, Congyu [1 ]
机构
[1] Jiangsu Normal Univ, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金;
关键词
Multivariate time series; Anomaly detection; Variational autoencoder; Adversarial training;
D O I
10.1016/j.ins.2024.120852
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
High labor costs and the requirement for significant domain expertise often result in a lack of anomaly labels in most time series. Consequently, employing unsupervised methods becomes critical for practical industrial applications. However, prevailing reconstruction-based anomaly detection algorithms encounter challenges in capturing intricate underlying correlations and temporal dependencies in time series. This study introduces an unsupervised anomaly detection model called Variational AutoeEncoder with Adversarial Training for Multivariate Time Series Anomaly Detection (VAEAT). Its fundamental concept involves adopting a two-phase training strategy to improve anomaly detection precision through adversarial reconstruction of raw data. In the first phase, the model reconstructs raw data to extract its basic features by training two enhanced variational autoencoders (VAEs) that incorporate both the long short -term memory (LSTM) network and the attention mechanism in their common encoder. In the second phase, the model refines reconstructed data to optimize the reconstruction quality. In this manner, this two-phase VAE model effectively captures intricate underlying correlation and temporal dependencies. A large number of experiments are conducted to evaluate the performance on five publicly available datasets, and experimental results illustrate that VAEAT exhibits robust performance and effective anomaly detection capabilities. The source code of the proposed VAEAT can be available at https://github .com /Du -Team /VAEAT.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] A two-stage adversarial Transformer based approach for multivariate industrial time series anomaly detection
    Junfu Chen
    Dechang Pi
    Xixuan Wang
    Applied Intelligence, 2024, 54 : 4210 - 4229
  • [32] Unsupervised Multivariate Time Series Data Anomaly Detection in Industrial IoT: A Confidence Adversarial Autoencoder Network
    Shan, Jiahao
    Cai, Donghong
    Fang, Fang
    Khan, Zahid
    Fan, Pingzhi
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2024, 5 : 7752 - 7766
  • [33] A two-stage adversarial Transformer based approach for multivariate industrial time series anomaly detection
    Chen, Junfu
    Pi, Dechang
    Wang, Xixuan
    APPLIED INTELLIGENCE, 2024, 54 (05) : 4210 - 4229
  • [34] Reconstruction-based anomaly detection for multivariate time series using contrastive generative adversarial networks
    Miao, Jiawei
    Tao, Haicheng
    Xie, Haoran
    Sun, Jianshan
    Cao, Jie
    INFORMATION PROCESSING & MANAGEMENT, 2024, 61 (01)
  • [35] Adaptive Multivariate Time-Series Anomaly Detection
    Lv, Jianming
    Wang, Yaquan
    Chen, Shengjing
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (04)
  • [36] Contextual anomaly detection for multivariate time series data
    Kim, Hyojoong
    Kim, Heeyoung
    QUALITY ENGINEERING, 2023, 35 (04) : 686 - 695
  • [37] Anomaly detection in multivariate time series of drilling data
    Altindal, Mehmet Cagri
    Nivlet, Philippe
    Tabib, Mandar
    Rasheed, Adil
    Kristiansen, Tron Golder
    Khosravanian, Rasool
    GEOENERGY SCIENCE AND ENGINEERING, 2024, 237
  • [38] An Evaluation of Anomaly Detection and Diagnosis in Multivariate Time Series
    Garg, Astha
    Zhang, Wenyu
    Samaran, Jules
    Savitha, Ramasamy
    Foo, Chuan-Sheng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (06) : 2508 - 2517
  • [39] Contrastive autoencoder for anomaly detection in multivariate time series
    Zhou, Hao
    Yu, Ke
    Zhang, Xuan
    Wu, Guanlin
    Yazidi, Anis
    INFORMATION SCIENCES, 2022, 610 : 266 - 280
  • [40] Unsupervised Anomaly Detection Approach for Multivariate Time Series
    Zhou, Yuanlin
    Song, Yingxuan
    Qian, Mideng
    2021 21ST INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY COMPANION (QRS-C 2021), 2021, : 229 - 235