Two-Level Privacy-Preserving Framework: Federated Learning for Attack Detection in the Consumer Internet of Things

被引:10
|
作者
Rabieinejad, Elnaz [1 ]
Yazdinejad, Abbas [1 ]
Dehghantanha, Ali [1 ]
Srivastava, Gautam [2 ,3 ,4 ]
机构
[1] Univ Guelph, Sch Comp Sci, Cyber Sci Lab, Canada Cyber Foundry, Guelph, ON N1H 6S1, Canada
[2] Brandon Univ, Dept Math & Comp Sci, Brandon, MB R7A 6A9, Canada
[3] China Med Univ, Res Ctr Interneural Comp, Taichung 40402, Taiwan
[4] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut 1102, Lebanon
基金
加拿大自然科学与工程研究理事会;
关键词
Privacy; Security; Data privacy; Cryptography; Data models; Computational modeling; Servers; FL; PHE; ConsumerIoT; privacy; attack detection;
D O I
10.1109/TCE.2024.3349490
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As the adoption of Consumer Internet of Things (CIoT) devices surges, so do concerns about security vulnerabilities and privacy breaches. Given their integration into daily life and data collection capabilities, it is crucial to safeguard user privacy against unauthorized access and potential leaks proactively. Federated learning, an advanced machine learning, provides a promising solution by inherently prioritizing privacy, circumventing the need for centralized data collection, and bolstering security. Yet, federated learning opens up avenues for adversaries to extract critical information from the machine learning model through data leakage and model inference attacks targeted at the central server. In response to this particular concern, we present an innovative two-level privacy-preserving framework in this paper. This framework synergistically combines federated learning with partially homomorphic encryption, which we favor over other methods such as fully homomorphic encryption and differential privacy. Our preference for partially homomorphic encryption is based on its superior balance between computational efficiency and model performance. This advantage becomes particularly relevant when considering the intense computational demands of fully homomorphic encryption and the sacrifice to model accuracy often associated with differential privacy. Incorporating partially homomorphic encryption augments federated learning's privacy assurance, introducing an additional protective layer. The fundamental properties of partially homomorphic encryption enable the central server to aggregate and compute operations on the encrypted local models without decryption, thereby preserving sensitive information from potential exposures. Empirical results substantiate the efficacy of the proposed framework, which significantly ameliorates attack prediction error rates and reduces false alarms compared to conventional methods. Moreover, through security analysis, we prove our proposed framework's enhanced privacy compared to existing methods that deploy federated learning for attack detection.
引用
收藏
页码:4258 / 4265
页数:8
相关论文
共 50 条
  • [41] PEPFL:A framework for a practical and efficient privacy-preserving federated learning
    Yange Chen
    Baocang Wang
    Hang Jiang
    Pu Duan
    Yuan Ping
    Zhiyong Hong
    Digital Communications and Networks, 2024, 10 (02) : 355 - 368
  • [42] Verifiable Federated Learning With Privacy-Preserving Data Aggregation for Consumer Electronics
    Xie, Haoran
    Wang, Yujue
    Ding, Yong
    Yang, Changsong
    Zheng, Haibin
    Qin, Bo
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 2696 - 2707
  • [43] A privacy-preserving heterogeneous federated learning framework with class imbalance learning for electricity theft detection
    Wen, Hanguan
    Liu, Xiufeng
    Lei, Bo
    Yang, Ming
    Cheng, Xu
    Chen, Zhe
    APPLIED ENERGY, 2024, 378
  • [44] Design and implementation of privacy-preserving federated learning algorithm for consumer IoT
    Zhao B.
    Ji Y.
    Shi Y.
    Jiang X.
    Alexandria Engineering Journal, 2024, 106 : 206 - 216
  • [45] Edge-assisted U-shaped split federated learning with privacy-preserving for Internet of Things
    Zhang, Shiqiang
    Zhao, Zihang
    Liu, Detian
    Cao, Yang
    Tang, Hengliang
    You, Siqing
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 262
  • [46] Federated Learning Security and Privacy-Preserving Algorithm and Experiments Research Under Internet of Things Critical Infrastructure
    Jalali, Nasir Ahmad
    Chen, Hongsong
    TSINGHUA SCIENCE AND TECHNOLOGY, 2024, 29 (02): : 400 - 414
  • [47] PPSFL: Privacy-Preserving Split Federated Learning for heterogeneous data in edge-based Internet of Things
    Zheng, Jiali
    Chen, Yixin
    Lai, Qijia
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 156 : 231 - 241
  • [48] EPDR: An Efficient and Privacy-Preserving Disease Research System with Horizontal Federated Learning in the Internet of Medical Things
    Yang, Yi
    He, Debiao
    Wang, Jing
    Feng, Qi
    Luo, Min
    HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES, 2024, 14 : 1 - 18
  • [49] More Efficient and Verifiable Privacy-Preserving Aggregation Scheme for Internet of Things-Based Federated Learning
    Shi, Rongquan
    Wei, Lifei
    Zhang, Lei
    APPLIED SCIENCES-BASEL, 2024, 14 (13):
  • [50] Privacy-Preserving Personalized Federated Learning
    Hu, Rui
    Guo, Yuanxiong
    Li, Hongning
    Pei, Qingqi
    Gong, Yanmin
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,