Two-Level Privacy-Preserving Framework: Federated Learning for Attack Detection in the Consumer Internet of Things

被引:10
|
作者
Rabieinejad, Elnaz [1 ]
Yazdinejad, Abbas [1 ]
Dehghantanha, Ali [1 ]
Srivastava, Gautam [2 ,3 ,4 ]
机构
[1] Univ Guelph, Sch Comp Sci, Cyber Sci Lab, Canada Cyber Foundry, Guelph, ON N1H 6S1, Canada
[2] Brandon Univ, Dept Math & Comp Sci, Brandon, MB R7A 6A9, Canada
[3] China Med Univ, Res Ctr Interneural Comp, Taichung 40402, Taiwan
[4] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut 1102, Lebanon
基金
加拿大自然科学与工程研究理事会;
关键词
Privacy; Security; Data privacy; Cryptography; Data models; Computational modeling; Servers; FL; PHE; ConsumerIoT; privacy; attack detection;
D O I
10.1109/TCE.2024.3349490
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As the adoption of Consumer Internet of Things (CIoT) devices surges, so do concerns about security vulnerabilities and privacy breaches. Given their integration into daily life and data collection capabilities, it is crucial to safeguard user privacy against unauthorized access and potential leaks proactively. Federated learning, an advanced machine learning, provides a promising solution by inherently prioritizing privacy, circumventing the need for centralized data collection, and bolstering security. Yet, federated learning opens up avenues for adversaries to extract critical information from the machine learning model through data leakage and model inference attacks targeted at the central server. In response to this particular concern, we present an innovative two-level privacy-preserving framework in this paper. This framework synergistically combines federated learning with partially homomorphic encryption, which we favor over other methods such as fully homomorphic encryption and differential privacy. Our preference for partially homomorphic encryption is based on its superior balance between computational efficiency and model performance. This advantage becomes particularly relevant when considering the intense computational demands of fully homomorphic encryption and the sacrifice to model accuracy often associated with differential privacy. Incorporating partially homomorphic encryption augments federated learning's privacy assurance, introducing an additional protective layer. The fundamental properties of partially homomorphic encryption enable the central server to aggregate and compute operations on the encrypted local models without decryption, thereby preserving sensitive information from potential exposures. Empirical results substantiate the efficacy of the proposed framework, which significantly ameliorates attack prediction error rates and reduces false alarms compared to conventional methods. Moreover, through security analysis, we prove our proposed framework's enhanced privacy compared to existing methods that deploy federated learning for attack detection.
引用
收藏
页码:4258 / 4265
页数:8
相关论文
共 50 条
  • [21] A Comprehensive Privacy-Preserving Federated Learning Scheme With Secure Authentication and Aggregation for Internet of Medical Things
    Liu, Jingwei
    Zhang, Jin
    Jan, Mian Ahmad
    Sun, Rong
    Liu, Lei
    Verma, Sahil
    Chatterjee, Pushpita
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (06) : 3282 - 3292
  • [22] A Framework for Privacy-Preserving in IoV Using Federated Learning With Differential Privacy
    Adnan, Muhammad
    Syed, Madiha Haider
    Anjum, Adeel
    Rehman, Semeen
    IEEE ACCESS, 2025, 13 : 13507 - 13521
  • [23] Visual Object Detection for Privacy-Preserving Federated Learning
    Zhang, Jing
    Zhou, Jiting
    Guo, Jinyang
    Sun, Xiaohan
    IEEE ACCESS, 2023, 11 : 33324 - 33335
  • [24] A Secure and Privacy-preserving Internet of Things Framework for Smart City
    Witti, Moussa
    Konstantas, Dimitri
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: IOT AND SMART CITY (ICIT 2018), 2018, : 145 - 150
  • [25] A Lightweight, Privacy-Preserving Tensor Completion Framework for Internet of Things
    Wu, Shuyu
    Kong, Linghe
    Xiang, Qiao
    Zheng, Zhenzhe
    Fu, Luoyi
    Chen, Guihai
    19TH IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING WITH APPLICATIONS (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2021), 2021, : 644 - 651
  • [26] Privacy-Preserving Detection of Poisoning Attacks in Federated Learning
    Muhr, Trent
    Zhang, Wensheng
    2022 19TH ANNUAL INTERNATIONAL CONFERENCE ON PRIVACY, SECURITY & TRUST (PST), 2022,
  • [27] Privacy-preserving Federated Learning System for Fatigue Detection
    Mohammadi, Mohammadreza
    Allocca, Roberto
    Eklund, David
    Shrestha, Rakesh
    Sinaei, Sima
    2023 IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND RESILIENCE, CSR, 2023, : 624 - 629
  • [28] Trusted Federated Learning Framework for Attack Detection in Edge Industrial Internet of Things
    Singh, Mahendra Pratap
    Anand, Ashutosh
    Janaswamy, Lakshmi Aashish Prateek
    Sundarrajan, Sudarshan
    Gupta, Maanak
    2023 EIGHTH INTERNATIONAL CONFERENCE ON FOG AND MOBILE EDGE COMPUTING, FMEC, 2023, : 64 - 71
  • [29] PFLF: Privacy-Preserving Federated Learning Framework for Edge Computing
    Zhou, Hao
    Yang, Geng
    Dai, Hua
    Liu, Guoxiu
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2022, 17 : 1905 - 1918
  • [30] A Privacy-Preserving Federated Learning Framework With Lightweight and Fair in IoT
    Chen, Yange
    Liu, Lei
    Ping, Yuan
    Atiquzzaman, Mohammed
    Mumtaz, Shahid
    Zhang, Zhili
    Guizani, Mohsen
    Tian, Zhihong
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (05): : 5843 - 5858