DBMA-Net: A Dual-Branch Multiattention Network for Polyp Segmentation

被引:2
|
作者
Zhai, Chenxu [1 ]
Yang, Lei [1 ]
Liu, Yanhong [1 ]
Yu, Hongnian [1 ,2 ]
机构
[1] Zhengzhou Univ, Sch Elect & Informat Engn, Zhengzhou 450001, Henan, Peoples R China
[2] Edinburgh Napier Univ, Built Environm, Edinburgh EH10 5DT, Scotland
基金
中国国家自然科学基金;
关键词
Image segmentation; Transformers; Feature extraction; Biomedical imaging; Lesions; Shape; Optimization; Attention mechanism; dual-branch encoder; feature integration mechanism; polyp segmentation; ATTENTION;
D O I
10.1109/TIM.2024.3379418
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the early prevention stage of colorectal cancer (CRC), the utilization of automatic polyp segmentation techniques from colonoscopy images has demonstrated efficacy in mitigating the misdiagnosis rate. Nonetheless, accurate polyp segmentation is always against with various challenges, including the presence of inconsistent size and morphological changes within polyp classes, limited interclass contrast, and high levels of interference. In recent years, much methodologies based on convolutional neural networks (CNNs) have been widely introduced to enhance the precision of polyp segmentation. However, two significant hurdles persist: 1) these methods frequently suffer from an inadequate acquisition of contextual features, causing insufficient feature representation and 2) there is a deficiency in recognizing intricate information, such as precise polyp boundaries. Addressing these issues, this article introduces a novel dual-branch multiattention network, denoted as DBMA-Net. Specifically, proposed DBMA-Net primarily introduces a dual-encoding path that combines CNN and Transformer-based approaches to enrich feature representation. Additionally, an attention-based fusion module (AFM) is incorporated between the dual-encoding path, aimed at optimizing features by supplementing local information with global insights. Subsequently, two distinct attention mechanisms are introduced to enhance features: the attention-based enhancement module (AEM) and the multiview attention module (MAM), to acquire stronger local features. These modules serve to enrich the finer details while extensively exploring and enhancing the lesion region, thereby further elevating segmentation accuracy. Following the above feature optimization, the enhanced feature maps are hierarchically integrated across multiple scales based on the proposed multiscale feature integration module (MFIM) for accurate feature reconstruction. This strategy not only curtails feature loss but also aids in restoring feature resolution. Ultimately, comprehensive experiments, including comparative and ablation studies across various datasets, validate the superior segmentation performance of the proposed network compared to most state-of-the-art (SOTA) models.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [21] HDB-Net: hierarchical dual-branch network for retinal layer segmentation in diseased OCT images
    Chen, Yu
    Zhang, XueHe
    Yang, Jiahui
    Han, Gang
    Zhang, He
    Lai, MingZhu
    Zhao, Jie
    BIOMEDICAL OPTICS EXPRESS, 2024, 15 (09): : 5359 - 5383
  • [22] DBD-Net: Dual-Branch Decoder Network with a Multiscale Cascaded Residual Module for Ship Segmentation
    Ding, Xiajun
    Jiang, Xiaodan
    Jiang, Xiaoliang
    ELECTRONICS, 2025, 14 (01):
  • [23] Dual-Branch-UNet: A Dual-Branch Convolutional Neural Network for Medical Image Segmentation
    Jian, Muwei
    Wu, Ronghua
    Chen, Hongyu
    Fu, Lanqi
    Yang, Chengdong
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 137 (01): : 705 - 716
  • [24] PSR-Net: A Dual-Branch Pyramid Semantic Reasoning Network for Segmentation of Remote Sensing Images
    Wang, Lijun
    Li, Bicao
    Wang, Bei
    Li, Chunlei
    Huang, Jie
    Song, Mengxing
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT II, 2023, 14255 : 582 - 592
  • [25] CMNet: deep learning model for colon polyp segmentation based on dual-branch structure
    Cao, Xuguang
    Fan, Kefeng
    Xu, Cun
    Ma, Huilin
    Jiao, Kaijie
    JOURNAL OF MEDICAL IMAGING, 2024, 11 (02)
  • [26] Dual-Branch TransV-Net for 3-D Echocardiography Segmentation
    Zhang, Jiapeng
    Wang, Yongxiong
    Chen, Lijun
    Liu, Jinlong
    Zhang, Sunjie
    Pan, Zhiqun
    Wang, Zhe
    Tang, Zhenhui
    Guo, Ying
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (12) : 11675 - 11686
  • [27] Dual-branch hybrid network for lesion segmentation in gastric cancer images
    He, Dongzhi
    Zhang, Yuanyu
    Huang, Hui
    Si, Yuhang
    Wang, Zhiqiang
    Li, Yunqi
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [28] Shuff-BiseNet: a dual-branch segmentation network for pavement cracks
    Haiqun Wang
    Bingnan Wang
    Tao Zhao
    Signal, Image and Video Processing, 2024, 18 : 3309 - 3320
  • [29] Dual-branch hybrid network for lesion segmentation in gastric cancer images
    Dongzhi He
    Yuanyu Zhang
    Hui Huang
    Yuhang Si
    Zhiqiang Wang
    Yunqi Li
    Scientific Reports, 13
  • [30] SCLMnet: A dual-branch guided network for lung and lung lobe segmentation
    Zhang, Shuai
    Yuan, Hongmei
    Cao, Hui
    Yang, Minglei
    Zhang, Cheng
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 86