SCLMnet: A dual-branch guided network for lung and lung lobe segmentation

被引:4
|
作者
Zhang, Shuai [1 ,2 ]
Yuan, Hongmei [2 ]
Cao, Hui [1 ]
Yang, Minglei [2 ]
Zhang, Cheng [1 ]
机构
[1] Shandong Univ Tradit Chinese Med, Coll Intelligence & Informat Engn, Jinan 250355, Shandong, Peoples R China
[2] Midea Grp, Shanghai 528300, Peoples R China
基金
中国国家自然科学基金;
关键词
Chest CT images; Lung segmentation; Lung lobe segmentation; Image processing; Convolutional neural network;
D O I
10.1016/j.bspc.2023.105211
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Lung and lung lobe segmentation are two crucial techniques for lung imaging analysis that interact in clinical settings. Lung segmentation assists physicians in comparing different images to select the most appropriate surgical plan, while lobe segmentation provides precise anatomical information to help plan surgical procedures. However, inaccurate lung segmentation edges, mis-segmented lobe boundaries, and tiny targets pose challenges. Therefore, we propose a dual-branch guided convolutional neural network, SCLMnet, for lung and lung lobe segmentation. To completely leverage the semantic information of feature maps, the first branch adds a spatial linkage module (SLM) to focus on low-level features at different spatial levels, highlighting feature representations of lung edges and lung lobe boundaries. A channel linkage module (CLM) is added by matrix inner product to model channel relations, emphasizing the relevance and similarity of feature maps and capturing the interdependency of high-level feature channels to highlight feature representations of the entire lung lobe region. Transmodal synaptic linkage (TSL) and multi-scale fusion strategy guide the feature information of the CLM and SLM and the deep features extracted by the second branch ResUNet to jointly explore useful information in chest computer tomography (CT) images. To evaluate the performance of the state-of-the-art model, we use three publicly available datasets: LUNA16, COVID-19-CT-Seg, and VESSEL12. Compared to the existing methods, SCLMnet achieves average Dice scores of 92.17%, 97.80%, and 99.12%, respectively, demonstrating remarkable performance, which suggests that lung and lung lobe segmentation using CT images with SCLMnet can play an essential role in clinical research.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Dual-branch residual network for lung nodule segmentation
    Cao, Haichao
    Liu, Hong
    Song, Enmin
    Hung, Chih-Cheng
    Ma, Guangzhi
    Xu, Xiangyang
    Jin, Renchao
    Lu, Jianguo
    APPLIED SOFT COMPUTING, 2020, 86
  • [2] Dual-branch residual network for lung nodule segmentation
    Cao, Haichao
    Liu, Hong
    Song, Enmin
    Hung, Chih-Cheng
    Ma, Guangzhi
    Xu, Xiangyang
    Jin, Renchao
    Lu, Jianguo
    Liu, Hong (hl.cbib@gmail.com), 1600, Elsevier Ltd (86):
  • [3] A dual-branch network for ultrasound image segmentation
    Zhu, Zhiqin
    Zhang, Zimeng
    Qi, Guanqiu
    Li, Yuanyuan
    Li, Yuzhen
    Mu, Lan
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 103
  • [4] Parallel Dual-Branch Polyp Segmentation Network
    Sun, Kunjie
    Cheng, Li
    Yuan, Haiwen
    Li, Xuan
    IEEE ACCESS, 2024, 12 : 192051 - 192061
  • [5] Robust Localization-Guided Dual-Branch Network for Camouflaged Object Segmentation
    Wang, Chuanjiang
    Li, Yuepeng
    Wei, Guohui
    Hou, Xiankai
    Sun, Xiujuan
    ELECTRONICS, 2024, 13 (05)
  • [6] Coarse-to-Fine Lung Nodule Segmentation in CT Images With Image Enhancement and Dual-Branch Network
    Wu, Zhitong
    Zhou, Qianjun
    Wang, Feng
    IEEE ACCESS, 2021, 9 (09): : 7255 - 7262
  • [7] DAG-Net: Dual-Branch Attention-Guided Network for Multi-Scale Information Fusion in Lung Nodule Segmentation
    Zhang, Bojie
    Zhu, Hongqing
    Wang, Ziying
    Luo, Lan
    Yu, Yang
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (06)
  • [8] Lightweight dual-branch network for vehicle exhausts segmentation
    Sheng, Chiyun
    Hu, Bin
    Meng, Fanjun
    Yin, Dong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (12) : 17785 - 17806
  • [9] Dual-Branch Network for Cloud and Cloud Shadow Segmentation
    Lu, Chen
    Xia, Min
    Qian, Ming
    Chen, Binyu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [10] A Dual-Branch Fusion Network for Surgical Instrument Segmentation
    Yang, Lei
    Zhai, Chenxu
    Wang, Hongyong
    Liu, Yanhong
    Bian, Guibin
    IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, 2024, 6 (04): : 1542 - 1554