Banach algebra mappings preserving the invertibility of linear pencils

被引:1
|
作者
Schulz, Francois [1 ]
机构
[1] Univ Johannesburg, Fac Sci, Dept Math & Appl Math, POB 524,Auckland Pk, ZA-2006 Johannesburg, South Africa
关键词
Banach algebra; Rank; Trace; Invertibility preserving mappings; Jordan isomorphism; SPECTRAL VARIATION; MAPS; DETERMINANT; UNIQUENESS; TRACE; SOCLE;
D O I
10.1016/j.laa.2024.03.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A and B be complex unital Banach algebras, and let phi, 0: A -+ B be surjective mappings. If A is semisimple with an essential socle and phi and 0 together preserve the invertibility of linear pencils in both directions, that is, for any x, y is an element of A and lambda is an element of C, lambda x + y is invertible in A if and only if lambda phi(x) + 0(y) is invertible in B, then we show that there exists an invertible element u in B and a Jordan isomorphism J : A -+ B such that phi(x) = 0(x) = uJ(x) for all x is an element of A. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页码:109 / 122
页数:14
相关论文
共 50 条
  • [31] Linear maps preserving invertibility or related spectral properties
    Hou, JC
    Semrl, P
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2003, 19 (03) : 473 - 484
  • [32] On linear maps preserving generalized invertibility and related properties
    Boudi, Nadia
    Hadder, Youness
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) : 20 - 25
  • [33] Characterization of linear mappings on Banach algebras
    Li, Shan
    Li, Jiankui
    Luo, Kaijia
    FILOMAT, 2024, 38 (07) : 2217 - 2226
  • [34] Linear Maps Preserving Invertibility or Related Spectral Properties
    Jin Chuan Hou
    Peter Šemrl
    Acta Mathematica Sinica, 2003, 19 : 473 - 484
  • [35] ORTHOGONALITY AND LINEAR MAPPINGS IN BANACH MODULES
    Yun, Sungsik
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2015, 22 (04): : 343 - 357
  • [36] Linear mappings approximately preserving ρ*-orthogonality
    Dehghani, Mandi
    Zamani, Ali
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2017, 28 (05): : 992 - 1001
  • [37] On linear mappings approximately preserving orthogonality
    Kong, Liang
    Cao, Huai-Xin
    PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE OF MATRICES AND OPERATORS (MAO 2012), 2012, : 20 - 23
  • [38] Linear mappings approximately preserving orthogonality
    Chmielinski, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 304 (01) : 158 - 169
  • [39] On invertibility of Sobolev mappings
    Kovalev, Leonid V.
    Onninen, Jani
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 656 : 1 - 16
  • [40] LINEAR MAPPINGS PRESERVING THE COPOSITIVE CONE
    Shitov, Yaroslav
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (08) : 3173 - 3176