Banach algebra mappings preserving the invertibility of linear pencils
被引:1
|
作者:
Schulz, Francois
论文数: 0引用数: 0
h-index: 0
机构:
Univ Johannesburg, Fac Sci, Dept Math & Appl Math, POB 524,Auckland Pk, ZA-2006 Johannesburg, South AfricaUniv Johannesburg, Fac Sci, Dept Math & Appl Math, POB 524,Auckland Pk, ZA-2006 Johannesburg, South Africa
Schulz, Francois
[1
]
机构:
[1] Univ Johannesburg, Fac Sci, Dept Math & Appl Math, POB 524,Auckland Pk, ZA-2006 Johannesburg, South Africa
Let A and B be complex unital Banach algebras, and let phi, 0: A -+ B be surjective mappings. If A is semisimple with an essential socle and phi and 0 together preserve the invertibility of linear pencils in both directions, that is, for any x, y is an element of A and lambda is an element of C, lambda x + y is invertible in A if and only if lambda phi(x) + 0(y) is invertible in B, then we show that there exists an invertible element u in B and a Jordan isomorphism J : A -+ B such that phi(x) = 0(x) = uJ(x) for all x is an element of A. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
机构:
Univ Ljubljana, Fac Educ, SI-1000 Ljubljana, Slovenia
Univ Ljubljana, Fac Math & Phys, SI-1000 Ljubljana, SloveniaLodz Univ Technol, Inst Math, Wolczanska 215, PL-90024 Lodz, Poland