NEGATIVE EIGENVALUES OF THE CONFORMAL LAPLACIAN

被引:0
|
作者
Henry, Guillermo [1 ,2 ,3 ]
Petean, Jimmy [4 ]
机构
[1] Univ Buenos Aires, Dept Matemat, FCEyN, Buenos Aires, Argentina
[2] CONICET UBA, IMAS, Ciudad Univ Pab 1,C1428EHA, Buenos Aires, Argentina
[3] Consejo Nacl Invest Cient & Tecn, Buenos Aires, Argentina
[4] CIMAT, AP 402, Guanajuato 36000, Gto, Mexico
关键词
SIMPLY CONNECTED MANIFOLDS; SCALAR CURVATURE; YAMABE;
D O I
10.1090/proc/16798
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be a closed differentiable manifold of dimension at least 3. Let Lambda 0(M) 0 ( M ) be the minimum number of non -positive eigenvalues that the conformal Laplacian of a metric on M can have. We prove that for any k greater than or equal to Lambda 0(M), 0 ( M ), there exists a Riemannian metric on M such that its conformal Laplacian has exactly k negative eigenvalues. Also, we discuss upper bounds for Lambda 0(M). 0 ( M ).
引用
收藏
页码:3085 / 3096
页数:12
相关论文
共 50 条
  • [41] Eigenvalues of the Laplacian and extrinsic geometry
    Asma Hassannezhad
    Annals of Global Analysis and Geometry, 2013, 44 : 517 - 527
  • [42] The Laplacian eigenvalues of mixed graphs
    Zhang, XD
    Luo, R
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 362 : 109 - 119
  • [43] BOUNDS FOR LAPLACIAN GRAPH EIGENVALUES
    Maden, A. Dilek
    Buyukkose, Serife
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (03): : 529 - 536
  • [44] EIGENVALUES OF THE LAPLACIAN ON RIEMANNIAN MANIFOLDS
    Cheng, Qing-Ming
    Qi, Xuerong
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (07)
  • [45] On a conjecture for the signless Laplacian eigenvalues
    Yang, Jieshan
    You, Lihua
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 446 : 115 - 132
  • [46] On the multiplicity of eigenvalues of the Laplacian on surfaces
    Hoffmann-Ostenhof, M
    Hoffmann-Ostenhof, T
    Nadirashvili, N
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1999, 17 (01) : 43 - 48
  • [47] On Laplacian eigenvalues of connected graphs
    Igor Ž. Milovanović
    Emina I. Milovanović
    Edin Glogić
    Czechoslovak Mathematical Journal, 2015, 65 : 529 - 535
  • [48] On a conjecture for the sum of Laplacian eigenvalues
    Wang, Shouzhong
    Huang, Yufei
    Liu, Bolian
    MATHEMATICAL AND COMPUTER MODELLING, 2012, 56 (3-4) : 60 - 68
  • [49] BROWNIAN MOVEMENT AND LAPLACIAN EIGENVALUES
    LOUCHARD, G
    ANNALES DE L INSTITUT HENRI POINCARE SECTION B-CALCUL DES PROBABILITES ET STATISTIQUE, 1968, 4 (04): : 331 - &
  • [50] On the Laplacian eigenvalues of Gn,p
    Coja-Oghlan, Amin
    COMBINATORICS PROBABILITY & COMPUTING, 2007, 16 (06): : 923 - 946