On Laplacian eigenvalues of connected graphs

被引:0
|
作者
Igor Ž. Milovanović
Emina I. Milovanović
Edin Glogić
机构
[1] Faculty of Electronic Engineering,
[2] State University of Novi Pazar,undefined
来源
关键词
Laplacian eigenvalues; linear spread; ratio spread; 15A18; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be an undirected connected graph with n, n ⩾ 3, vertices and m edges with Laplacian eigenvalues µ1 ⩾ µ2 ⩾ ⋯ ⩾ µn−1 > µn = 0. Denote by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu _I} = {\mu _{{r_1}}} + {\mu _{{r_2}}} + \ldots + {\mu _{{r_k}}}$$\end{document}, 1 ⩽ k ⩽ n−2, 1 ⩽ r1 < r2 < ⋯ < rk ⩽ n−1, the sum of k arbitrary Laplacian eigenvalues, with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu _{{I_1}}} = {\mu _1} + {\mu _2} + \ldots + {\mu _k}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu _{{I_n}}} = {\mu _{n - k}} + \ldots + {\mu _{n - 1}}$$\end{document}. Lower bounds of graph invariants \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu _{{I_1}}} - {\mu _{{I_n}}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu _{{I_1}}}/{\mu _{{I_n}}}$$\end{document} are obtained. Some known inequalities follow as a special case.
引用
收藏
页码:529 / 535
页数:6
相关论文
共 50 条
  • [1] On Laplacian eigenvalues of connected graphs
    Milovanovic, Igor Z.
    Milovanovic, Emina I.
    Glogic, Edin
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (02) : 529 - 535
  • [2] An Inequality on Laplacian Eigenvalues of Connected Graphs
    Li, Rao
    ARS COMBINATORIA, 2012, 105 : 361 - 368
  • [3] Some remarks on Laplacian eigenvalues of connected graphs
    Jovanovic, Z.
    Milovanovic, E. I.
    Milovanovic, I. Z.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 503 : 48 - 55
  • [4] ON THE BOUNDS OF LAPLACIAN EIGENVALUES OF k-CONNECTED GRAPHS
    Chen, Xiaodan
    Hou, Yaoping
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (03) : 701 - 712
  • [5] On the bounds of Laplacian eigenvalues of k-connected graphs
    Xiaodan Chen
    Yaoping Hou
    Czechoslovak Mathematical Journal, 2015, 65 : 701 - 712
  • [6] Characterization of extremal graphs from Laplacian eigenvalues and the sum of powers of the Laplacian eigenvalues of graphs
    Chen, Xiaodan
    Das, Kinkar Ch.
    DISCRETE MATHEMATICS, 2015, 338 (07) : 1252 - 1263
  • [7] On the normalized Laplacian eigenvalues of graphs
    Das, Kinkar Ch.
    Gungor, A. Dilek
    Bozkurt, S. Burcu
    ARS COMBINATORIA, 2015, 118 : 143 - 154
  • [8] The Laplacian eigenvalues of mixed graphs
    Zhang, XD
    Luo, R
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 362 : 109 - 119
  • [9] Eigenvalues, Laplacian eigenvalues, and Hamiltonian connectivity of graphs
    Li, Rao
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2010, 13 (03): : 271 - 275
  • [10] On the multiplicity of laplacian eigenvalues of graphs
    Ji-Ming Guo
    Lin Feng
    Jiong-Ming Zhang
    Czechoslovak Mathematical Journal, 2010, 60 : 689 - 698