On Laplacian eigenvalues of connected graphs

被引:0
|
作者
Igor Ž. Milovanović
Emina I. Milovanović
Edin Glogić
机构
[1] Faculty of Electronic Engineering,
[2] State University of Novi Pazar,undefined
来源
关键词
Laplacian eigenvalues; linear spread; ratio spread; 15A18; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be an undirected connected graph with n, n ⩾ 3, vertices and m edges with Laplacian eigenvalues µ1 ⩾ µ2 ⩾ ⋯ ⩾ µn−1 > µn = 0. Denote by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu _I} = {\mu _{{r_1}}} + {\mu _{{r_2}}} + \ldots + {\mu _{{r_k}}}$$\end{document}, 1 ⩽ k ⩽ n−2, 1 ⩽ r1 < r2 < ⋯ < rk ⩽ n−1, the sum of k arbitrary Laplacian eigenvalues, with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu _{{I_1}}} = {\mu _1} + {\mu _2} + \ldots + {\mu _k}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu _{{I_n}}} = {\mu _{n - k}} + \ldots + {\mu _{n - 1}}$$\end{document}. Lower bounds of graph invariants \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu _{{I_1}}} - {\mu _{{I_n}}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu _{{I_1}}}/{\mu _{{I_n}}}$$\end{document} are obtained. Some known inequalities follow as a special case.
引用
收藏
页码:529 / 535
页数:6
相关论文
共 50 条
  • [21] Collapsing of connected sums and the eigenvalues of the Laplacian
    Takahashi, J
    JOURNAL OF GEOMETRY AND PHYSICS, 2002, 40 (3-4) : 201 - 208
  • [22] Some remarks on Laplacian eigenvalues and Laplacian energy of graphs
    Fath-Tabar, Gholam Hossein
    Ashrafi, Ali Reza
    MATHEMATICAL COMMUNICATIONS, 2010, 15 (02) : 443 - 451
  • [23] On distance Laplacian and distance signless Laplacian eigenvalues of graphs
    Das, Kinkar Ch.
    Aouchiche, Mustapha
    Hansen, Pierre
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (11): : 2307 - 2324
  • [24] Chain graphs with simple Laplacian eigenvalues and their Laplacian dynamics
    Alazemi, Abdullah
    Andelic, Milica
    Koledin, Tamara
    Stanic, Zoran
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (01):
  • [25] Chain graphs with simple Laplacian eigenvalues and their Laplacian dynamics
    Abdullah Alazemi
    Milica Anđelić
    Tamara Koledin
    Zoran Stanić
    Computational and Applied Mathematics, 2023, 42
  • [26] Laplacian eigenvalues of weighted threshold graphs
    Andelic, Milica
    Stanic, Zoran
    COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (01):
  • [27] Bounds on normalized Laplacian eigenvalues of graphs
    Jianxi Li
    Ji-Ming Guo
    Wai Chee Shiu
    Journal of Inequalities and Applications, 2014
  • [28] The diameter and Laplacian eigenvalues of directed graphs
    Chung, F
    ELECTRONIC JOURNAL OF COMBINATORICS, 2006, 13 (01):
  • [29] On the distance and distance Laplacian eigenvalues of graphs
    Lin, Huiqiu
    Wu, Baoyindureng
    Chen, Yingying
    Shu, Jinlong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 492 : 128 - 135
  • [30] Graphs with four distinct Laplacian eigenvalues
    Mohammadian, A.
    Tayfeh-Rezaie, B.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2011, 34 (04) : 671 - 682