Analog Optimization Circuit for Embedded Model Predictive Control

被引:0
|
作者
Adegbege, Ambrose Adebayo [1 ]
Moran, Francis D. [1 ]
机构
[1] Coll New Jersey, Lab Embedded Control & Optimizat LECO, Dept Elect & Comp Engn, Ewing, NJ 08618 USA
基金
美国国家航空航天局;
关键词
Circuits; Optimization; Analog circuits; Steady-state; Vectors; Predictive control; Field programmable analog arrays; nonlinear programming circuits; feedback optimization controllers; embedded control; model predictive control; NEURAL-NETWORKS; STABILITY; STATE; TANK; MPC;
D O I
10.1109/TCSI.2024.3415013
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Embedded Model Predictive Control (MPC) has taken on new significance, especially in resource-constrained applications, due to recent advances in software and hardware implementation technologies. In this paper, we exploit analog circuit techniques for embedded control implementation. We first interpret the traditional MPC problem as a continuous-time emulation of projected-gradient dynamics. Then the dynamics are implemented on an array of analog circuit processors, also known as Field Programmable Analog Arrays (FPAAs). Using an appropriately constructed Lyapunov function, we establish exponential stability of the ensuing circuit for a fixed input. We prove finite gain $\mathcal{L}_2$ stability when the analog circuit is in feedback interconnection with a physical system. We consider a broad range of control approaches to showcase the flexibility and the ease of implementation when the proposed analog optimization circuit is applied to a quadruple water tank system.
引用
收藏
页码:4247 / 4260
页数:14
相关论文
共 50 条
  • [31] Superconvergence of Online Optimization for Model Predictive Control
    Na, Sen
    Anitescu, Mihai
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (03) : 1383 - 1398
  • [32] Distributed optimization: applications in model predictive control
    Braun, Philipp
    Gruene, Lars
    AT-AUTOMATISIERUNGSTECHNIK, 2018, 66 (11) : 939 - 949
  • [33] STOCHASTIC MODEL PREDICTIVE CONTROL AND PORTFOLIO OPTIMIZATION
    Herzog, Florian
    Dondi, Gabriel
    Geering, Hans P.
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2007, 10 (02) : 203 - 233
  • [34] Effective optimization for fuzzy model predictive control
    Mollov, S
    Babuska, R
    Abonyi, J
    Verbruggen, HB
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2004, 12 (05) : 661 - 675
  • [35] Parameter Optimization of Model Predictive Control by PSO
    Suzuki, Ryohei
    Kawai, Fukiko
    Nakazawa, Chikashi
    Matsui, Tetsuro
    Aiyoshi, Eitaro
    ELECTRICAL ENGINEERING IN JAPAN, 2012, 178 (01) : 40 - 49
  • [36] ANALOG CIRCUIT OPTIMIZATION IN A GRAPHICAL ENVIRONMENT
    RANKIN, PJ
    SIEMENSMA, JM
    1989 IEEE INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN: DIGEST OF TECHNICAL PAPERS, 1989, : 372 - 375
  • [37] OPTOMEGA: An environment for analog circuit optimization
    Keramat, M
    Kielbasa, R
    ISCAS '98 - PROCEEDINGS OF THE 1998 INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-6, 1998, : E122 - E125
  • [38] Embedded Model Predictive Control of Unmanned Micro Aerial Vehicles
    Baca, Tomas
    Loianno, Giuseppe
    Saska, Martin
    2016 21ST INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2016, : 992 - 997
  • [39] Ultrafast Embedded Explicit Model Predictive Control for Nonlinear Systems
    Raha, Arnab
    Chakrabarty, Ankush
    Raghunathan, Vijay
    Buzzard, Gregery T.
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 4398 - 4403
  • [40] Embedded Subspace Predictive Control, a Model Based Design Approach
    Lima, Rafael B. C.
    Barros, Pericles R.
    IEEE LATIN AMERICA TRANSACTIONS, 2021, 19 (11) : 1816 - 1823