Intrusion Detection using Network Traffic Profiling and Machine Learning for IoT

被引:0
|
作者
Ben Slimane, Jihane [1 ]
Abd-Elkawy, Eman H. [1 ,2 ]
Maqbool, Albia [1 ]
机构
[1] Northern Border Univ, Fac Comp & Informat Technol, Dept Comp Sci, Ar Ar, Saudi Arabia
[2] Beni Suef Univ, Fac Sci, Dept Math & Comp Sci, Bani Suwayf, Egypt
关键词
Internet of Things (IoT); Intrusion Detection System (IDS); Network Traffic Profiling; Machine Learning; Cybersecurity; Real-time Detection; Supervised Learning; Unsupervised Learning; IoT Security; Threat Detection;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The proliferation of the Internet of Things (IoT) in various sectors, including healthcare, smart cities, and industrial automation, has significantly enhanced operational efficiency and service delivery. However, this widespread adoption has introduced new vulnerabilities, making IoT networks a prime target for cyberattacks. Traditional security mechanisms often fall short in protecting IoT devices due to their limited computational resources and the unique nature of IoT network traffic. This paper introduces a novel intrusion detection system (IDS) that leverages network traffic profiling and machine learning techniques tailored for the IoT ecosystem. By analyzing the behavioral patterns of network traffic, the proposed system can accurately identify malicious activities and potential threats in real-time, ensuring the integrity and confidentiality of IoT networks. The methodology encompasses data collection, feature extraction, model training, and evaluation stages, employing a combination of supervised and unsupervised machine learning algorithms to optimize detection accuracy. Experimental results, conducted on real-world IoT network datasets, demonstrate the effectiveness of our approach in detecting a wide range of cyber threats with high precision and recall rates. This research contributes to the cybersecurity domain by providing a scalable, efficient, and adaptive IDS framework that can be integrated into various IoT infrastructures to mitigate the risk of cyber intrusions.
引用
收藏
页码:2140 / 2149
页数:10
相关论文
共 50 条
  • [41] Intrusion Detection in IoT Using Deep Learning
    Banaamah, Alaa Mohammed
    Ahmad, Iftikhar
    SENSORS, 2022, 22 (21)
  • [42] Edge Computing Network Intrusion Detection System in IoT Using Deep Learning
    Hinojosa, Andres
    Majd, Nahid Ebrahimi
    2024 33RD INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATIONS AND NETWORKS, ICCCN 2024, 2024,
  • [43] Hybrid Intrusion Detection System for RPL IoT Networks Using Machine Learning and Deep Learning
    Shahid, Usama
    Hussain, Muhammad Zunnurain
    Hasan, Muhammad Zulkifl
    Haider, Ali
    Ali, Jibran
    Altaf, Jawad
    IEEE ACCESS, 2024, 12 : 113099 - 113112
  • [44] Machine Learning Based Network Intrusion Detection
    Lee, Chie-Hong
    Su, Yann-Yean
    Lin, Yu-Chun
    Lee, Shie-Jue
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (ICCIA), 2017, : 79 - 83
  • [45] Deep Learning Network Intrusion Detection Based on Network Traffic
    Wang, Hanyang
    Zhou, Sirui
    Li, Honglei
    Hu, Juan
    Du, Xinran
    Zhou, Jinghui
    He, Yunlong
    Fu, Fa
    Yang, Houqun
    ARTIFICIAL INTELLIGENCE AND SECURITY, ICAIS 2022, PT III, 2022, 13340 : 194 - 207
  • [46] A Distributed Intrusion Detection System using Machine Learning for IoT based on ToN-IoT Dataset
    Gad, Abdallah R.
    Haggag, Mohamed
    Nashat, Ahmed A.
    Barakat, Tamer M.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (06) : 548 - 563
  • [47] A Comparative Analysis of Machine Learning Techniques for IoT Intrusion Detection
    Vitorino, Joao
    Andrade, Rui
    Praca, Isabel
    Sousa, Orlando
    Maia, Eva
    FOUNDATIONS AND PRACTICE OF SECURITY, FPS 2021, 2022, 13291 : 191 - 207
  • [48] Machine Learning Based Intrusion Detection Systems for IoT Applications
    Verma, Abhishek
    Ranga, Virender
    WIRELESS PERSONAL COMMUNICATIONS, 2020, 111 (04) : 2287 - 2310
  • [49] Towards Machine Learning Based Intrusion Detection in IoT Networks
    Islam, Nahida
    Farhin, Fahiba
    Sultana, Ishrat
    Kaiser, M. Shamim
    Rahman, Md. Sazzadur
    Mahmud, Mufti
    Hosen, A. S. M. Sanwar
    Cho, Gi Hwan
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (02): : 1801 - 1821
  • [50] Machine learning and datamining methods for hybrid IoT intrusion detection
    El Ghazi, Abdellatif
    Rachid, Ait Moulay
    PROCEEDINGS OF 2020 5TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND ARTIFICIAL INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS (CLOUDTECH'20), 2020, : 80 - 85