Intrusion Detection using Network Traffic Profiling and Machine Learning for IoT

被引:0
|
作者
Ben Slimane, Jihane [1 ]
Abd-Elkawy, Eman H. [1 ,2 ]
Maqbool, Albia [1 ]
机构
[1] Northern Border Univ, Fac Comp & Informat Technol, Dept Comp Sci, Ar Ar, Saudi Arabia
[2] Beni Suef Univ, Fac Sci, Dept Math & Comp Sci, Bani Suwayf, Egypt
关键词
Internet of Things (IoT); Intrusion Detection System (IDS); Network Traffic Profiling; Machine Learning; Cybersecurity; Real-time Detection; Supervised Learning; Unsupervised Learning; IoT Security; Threat Detection;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The proliferation of the Internet of Things (IoT) in various sectors, including healthcare, smart cities, and industrial automation, has significantly enhanced operational efficiency and service delivery. However, this widespread adoption has introduced new vulnerabilities, making IoT networks a prime target for cyberattacks. Traditional security mechanisms often fall short in protecting IoT devices due to their limited computational resources and the unique nature of IoT network traffic. This paper introduces a novel intrusion detection system (IDS) that leverages network traffic profiling and machine learning techniques tailored for the IoT ecosystem. By analyzing the behavioral patterns of network traffic, the proposed system can accurately identify malicious activities and potential threats in real-time, ensuring the integrity and confidentiality of IoT networks. The methodology encompasses data collection, feature extraction, model training, and evaluation stages, employing a combination of supervised and unsupervised machine learning algorithms to optimize detection accuracy. Experimental results, conducted on real-world IoT network datasets, demonstrate the effectiveness of our approach in detecting a wide range of cyber threats with high precision and recall rates. This research contributes to the cybersecurity domain by providing a scalable, efficient, and adaptive IDS framework that can be integrated into various IoT infrastructures to mitigate the risk of cyber intrusions.
引用
收藏
页码:2140 / 2149
页数:10
相关论文
共 50 条
  • [21] A Comparative Study of Using Boosting-Based Machine Learning Algorithms for IoT Network Intrusion Detection
    Mohamed Saied
    Shawkat Guirguis
    Magda Madbouly
    International Journal of Computational Intelligence Systems, 16
  • [22] Enhancing network intrusion detection systems with combined network and host traffic features using deep learning: deep learning and IoT perspective
    Alars, Estabraq Saleem Abduljabbar
    Kurnaz, Sefer
    DISCOVER COMPUTING, 2024, 27 (01)
  • [23] Robust genetic machine learning ensemble model for intrusion detection in network traffic
    Akhtar, Muhammad Ali
    Qadri, Syed Muhammad Owais
    Siddiqui, Maria Andleeb
    Mustafa, Syed Muhammad Nabeel
    Javaid, Saba
    Ali, Syed Abbas
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [24] A Real-Time Smart Agent for Network Traffic Profiling and Intrusion Detection Based on Combined Machine Learning Algorithms
    El Kamel, Nadiya
    Eddabbah, Mohamed
    Lmoumen, Youssef
    Touahni, Raja
    NETWORKING, INTELLIGENT SYSTEMS AND SECURITY, 2022, 237 : 301 - 309
  • [25] Robust genetic machine learning ensemble model for intrusion detection in network traffic
    Muhammad Ali Akhtar
    Syed Muhammad Owais Qadri
    Maria Andleeb Siddiqui
    Syed Muhammad Nabeel Mustafa
    Saba Javaid
    Syed Abbas Ali
    Scientific Reports, 13 (1)
  • [26] Network Intrusion Detection Using Machine Learning Anomaly Detection Algorithms
    Hanifi, Khadija
    Bank, Hasan
    Karsligil, M. Elif
    Yavuz, A. Gokhan
    Guvensan, M. Amac
    2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,
  • [27] IoT Intrusion Detection System Based on Machine Learning
    Xu, Bayi
    Sun, Lei
    Mao, Xiuqing
    Ding, Ruiyang
    Liu, Chengwei
    ELECTRONICS, 2023, 12 (20)
  • [28] Anomaly Based Intrusion Detection for IoT with Machine Learning
    Shaver, Addison
    Liu, Zhipeng
    Thapa, Niraj
    Roy, Kaushik
    Gokaraju, Balakrishna
    Yuan, Xiaohon
    2020 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR): TRUSTED COMPUTING, PRIVACY, AND SECURING MULTIMEDIA, 2020,
  • [29] Intrusion Detection on the In-Vehicle Network Using Machine Learning
    Sharmin, Shaila
    Mansor, Hafizah
    2021 3RD INTERNATIONAL CYBER RESILIENCE CONFERENCE (CRC), 2021, : 26 - 31
  • [30] Investigating Network Intrusion Detection Datasets Using Machine Learning
    Amaizu, Gabriel Chukwunonso
    Nwakanma, Cosmas Ifeanyi
    Lee, Jae-Min
    Kim, Dong-Seong
    11TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE: DATA, NETWORK, AND AI IN THE AGE OF UNTACT (ICTC 2020), 2020, : 1325 - 1328