Pointwise uncertainty quantification for sparse variational Gaussian process regression with a Brownian motion prior

被引:0
|
作者
Travis, Luke [1 ]
Ray, Kolyan [1 ]
机构
[1] Imperial Coll London, Dept Math, London, England
关键词
RATES; CONTRACTION; INFERENCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study pointwise estimation and uncertainty quantification for a sparse variational Gaussian process method with eigenvector inducing variables. For a rescaled Brownian motion prior, we derive theoretical guarantees and limitations for the frequentist size and coverage of pointwise credible sets. For sufficiently many inducing variables, we precisely characterize the asymptotic frequentist coverage, deducing when credible sets from this variational method are conservative and when overconfident/misleading. We numerically illustrate the applicability of our results and discuss connections with other common Gaussian process priors.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] A novel sparse Gaussian process regression with time-aware spatiotemporal kernel for remaining useful life prediction and uncertainty quantification of bearings
    Cui, Jin
    Ji, Jinchen
    Zhang, Tianxiao
    Ni, Qing
    Cao, Licai
    Chen, Zixu
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2024,
  • [32] Variational Inference for Sparse Gaussian Process Modulated Hawkes Process
    Zhang, Rui
    Walder, Christian
    Rizoiu, Marian-Andrei
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 6803 - 6810
  • [33] Asynchronous Distributed Variational Gaussian Process for Regression
    Peng, Hao
    Zhe, Shandian
    Qi, Yuan
    Zhang, Xiao
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [34] Stochastic variational hierarchical mixture of sparse Gaussian processes for regression
    Thi Nhat Anh Nguyen
    Abdesselam Bouzerdoum
    Son Lam Phung
    Machine Learning, 2018, 107 : 1947 - 1986
  • [35] Stochastic variational hierarchical mixture of sparse Gaussian processes for regression
    Thi Nhat Anh Nguyen
    Bouzerdoum, Abdesselam
    Son Lam Phung
    MACHINE LEARNING, 2018, 107 (12) : 1947 - 1986
  • [36] Efficient Optimization for Sparse Gaussian Process Regression
    Cao, Yanshuai
    Brubaker, Marcus A.
    Fleet, David J.
    Hertzmann, Aaron
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (12) : 2415 - 2427
  • [37] Contour Method with Uncertainty Quantification: A Robust and Optimised Framework via Gaussian Process Regression
    Tognan, A.
    Laurenti, L.
    Salvati, E.
    EXPERIMENTAL MECHANICS, 2022, 62 (08) : 1305 - 1317
  • [38] Sparse Inverse Kernel Gaussian Process Regression
    Das, Kamalika
    Srivastava, Ashok N.
    STATISTICAL ANALYSIS AND DATA MINING, 2013, 6 (03) : 205 - 220
  • [39] Recursive estimation for sparse Gaussian process regression
    Schuerch, Manuel
    Azzimonti, Dario
    Benavoli, Alessio
    Zaffalon, Marco
    AUTOMATICA, 2020, 120
  • [40] Contour Method with Uncertainty Quantification: A Robust and Optimised Framework via Gaussian Process Regression
    A. Tognan
    L. Laurenti
    E. Salvati
    Experimental Mechanics, 2022, 62 : 1305 - 1317