Pointwise uncertainty quantification for sparse variational Gaussian process regression with a Brownian motion prior

被引:0
|
作者
Travis, Luke [1 ]
Ray, Kolyan [1 ]
机构
[1] Imperial Coll London, Dept Math, London, England
关键词
RATES; CONTRACTION; INFERENCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study pointwise estimation and uncertainty quantification for a sparse variational Gaussian process method with eigenvector inducing variables. For a rescaled Brownian motion prior, we derive theoretical guarantees and limitations for the frequentist size and coverage of pointwise credible sets. For sufficiently many inducing variables, we precisely characterize the asymptotic frequentist coverage, deducing when credible sets from this variational method are conservative and when overconfident/misleading. We numerically illustrate the applicability of our results and discuss connections with other common Gaussian process priors.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Sparse greedy Gaussian process regression
    Smola, AJ
    Bartlett, P
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 13, 2001, 13 : 619 - 625
  • [22] A Distributed Variational Inference Framework for Unifying Parallel Sparse Gaussian Process Regression Models
    Trong Nghia Hoang
    Quang Minh Hoang
    Low, Bryan Kian Hsiang
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [23] Convergence of sparse variational inference in gaussian processes regression
    Burt, David R.
    Rasmussen, Carl Edward
    Van Der Wilk, Mark
    Journal of Machine Learning Research, 2020, 21
  • [24] Convergence of Sparse Variational Inference in Gaussian Processes Regression
    Burt, David R.
    Rasmussen, Carl Edward
    van der Wilk, Mark
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [25] Wave height forecast method with uncertainty quantification based on Gaussian process regression
    Ouyang, Zi-lu
    Li, Chao-fan
    Zhan, Ke
    Li, Chuan-qing
    Zhu, Ren-chuan
    Zou, Zao-jian
    JOURNAL OF HYDRODYNAMICS, 2024, 36 (05) : 817 - 827
  • [26] Simultaneous quantification of epistemic and aleatory uncertainty in GMPEs using Gaussian process regression
    Marcel Hermkes
    Nicolas M. Kuehn
    Carsten Riggelsen
    Bulletin of Earthquake Engineering, 2014, 12 : 449 - 466
  • [27] UNCERTAINTY QUANTIFICATION OF MULTIVARIATE GAUSSIAN PROCESS REGRESSION FOR APPROXIMATING MULTIVARIATE COMPUTER CODES
    Al-Taweel, Younus
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2024, 14 (03): : 1058 - 1067
  • [28] Simultaneous quantification of epistemic and aleatory uncertainty in GMPEs using Gaussian process regression
    Hermkes, Marcel
    Kuehn, Nicolas M.
    Riggelsen, Carsten
    BULLETIN OF EARTHQUAKE ENGINEERING, 2014, 12 (01) : 449 - 466
  • [29] Multi-output local Gaussian process regression: Applications to uncertainty quantification
    Bilionis, Ilias
    Zabaras, Nicholas
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (17) : 5718 - 5746
  • [30] A Generalized Stochastic Variational Bayesian Hyperparameter Learning Framework for Sparse Spectrum Gaussian Process Regression
    Quang Minh Hoang
    Trong Nghia Hoang
    Low, Kian Hsiang
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2007 - 2014