Vision-Based Marker-Less Landing of an Unmanned Aerial System on Moving Ground Vehicle

被引:0
|
作者
Krpec, Blake [1 ,4 ]
Valasek, John [2 ]
Nogar, Stephen [3 ]
机构
[1] Texas A&M Univ, Coll Stn, TX 77843 USA
[2] Texas A&M Univ, Aerosp Engn Dept, Vehicle Syst & Control Lab, College Stn, TX 77843 USA
[3] DEVCOM Army Res Lab, Aberdeen Proving Ground, MD 21005 USA
[4] Southwest Res Inst, Intelligent Syst Div, Robot Auton Sect, San Antonio, TX 78238 USA
来源
关键词
Unmanned Ground Vehicle; Image Processing; Artificial Neural Network; Vision Based Landing; Unmanned Aerial Systems; Flight Control Surfaces; Extended Kalman Filter; Autopilot; Computing and Informatics; Embedded Computing System; TRACKING; UAV;
D O I
10.2514/1.I011282
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Current autonomous unmanned aerial systems (UASs) commonly use vision-based landing solutions that depend upon fiducial markers to localize a static or mobile landing target relative to the UAS. This paper develops and demonstrates an alternative method to fiducial markers with a combination of neural-network-based object detection and camera intrinsic properties to localize an unmanned ground vehicle (UGV) and enable autonomous landing. Implementing this visual approach is challenging given the limited compute power on board the UAS, but it is relevant for autonomous landings on targets for which affixing a fiducial marker a priori is not possible or not practical. The position estimate of the UGV is used to formulate a landing trajectory that is then input to the flight controller. Algorithms are tailored toward low size, weight, and power constraints, as all compute and sensing components weigh less than 100 g. Landings were successfully demonstrated in both simulation and experimentally on a UGV traveling in both a straight line and while turning. Simulation landings were successful at UGV speeds of up to 3.0 m/s, and experimental landings at speeds up to 1.0 m/s.
引用
收藏
页码:735 / 750
页数:16
相关论文
共 50 条
  • [31] Vision-Based Autonomous Landing of a Multi-Copter Unmanned Aerial Vehicle using Reinforcement Learning
    Lee, Seongheon
    Shim, Taemin
    Kim, Sungjoong
    Park, Junwoo
    Hong, Kyungwoo
    Bang, Hyochoong
    2018 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS), 2018, : 108 - 114
  • [32] Automated Vision-based Recovery of a Rotary Wing Unmanned Aerial Vehicle onto a Moving Platform
    Richardson, Thomas S.
    Jones, Chris G.
    Likhoded, Alexey
    Sparks, Ed
    Jordan, Andrew
    Cowling, Ian
    Willcox, Simon
    JOURNAL OF FIELD ROBOTICS, 2013, 30 (05) : 667 - 684
  • [33] Vision-based displacement measurement using an unmanned aerial vehicle
    Han, Yitian
    Wu, Gang
    Feng, Dongming
    STRUCTURAL CONTROL & HEALTH MONITORING, 2022, 29 (10):
  • [34] Guidance law design for vision-based unmanned aerial vehicle ground target tracking in wind
    Li X.-Q.
    Sun X.-X.
    Peng J.-L.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2011, 33 (11): : 2463 - 2467
  • [35] Vision based Autonomous Landing of an Unmanned Aerial Vehicle on a Stationary Target
    Sudevan, Vidya
    Shukla, Amit
    Karki, Hamad
    2017 17TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2017, : 362 - 367
  • [36] Runway detecting and tracking of an unmanned aerial landing vehicle based on vision
    Wang, Hongqun
    Peng, Jiaxiong
    Li, Lingling
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2006, 20 (08) : 1225 - 1244
  • [37] Autonomous Landing On A Moving Car With Unmanned Aerial Vehicle
    Baca, Tomas
    Stepan, Petr
    Saska, Martin
    2017 EUROPEAN CONFERENCE ON MOBILE ROBOTS (ECMR), 2017,
  • [38] Sliding Mode Control Approach for Vision-Based High-Precision Unmanned Aerial Vehicle Landing System Under Disturbances
    Wu, Hao
    Wang, Wei
    Wang, Tong
    Suzuki, Satoshi
    DRONES, 2025, 9 (01)
  • [39] Vision-Based SLAM System for Unmanned Aerial Vehicles
    Munguia, Rodrigo
    Urzua, Sarquis
    Bolea, Yolanda
    Grau, Antoni
    SENSORS, 2016, 16 (03)
  • [40] Moving target tracking method for unmanned aerial vehicle/unmanned ground vehicle heterogeneous system based on AprilTags
    Liang, Xiao
    Chen, Guodong
    Zhao, Shirou
    Xiu, Yiwei
    MEASUREMENT & CONTROL, 2020, 53 (3-4): : 427 - 440