Sensitivity and specificity of machine learning and deep learning algorithms in the diagnosis of thoracolumbar injuries resulting in vertebral fractures: A systematic review and meta-analysis

被引:1
|
作者
Beculic, Hakija [1 ,2 ]
Begagic, Emir [3 ]
Dzidic-Krivic, Amina [4 ]
Pugonja, Ragib [2 ]
Softic, Namira [1 ]
Basic, Binasa [5 ]
Balogun, Simon [6 ]
Nuhovic, Adem [7 ]
Softic, Emir [8 ]
Ljevakovic, Adnana [5 ]
Sefo, Haso [9 ]
Segalo, Sabina [10 ]
Skomorac, Rasim [2 ,11 ]
Pojskic, Mirza [12 ]
机构
[1] Cantonal Hosp Zenica, Dept Neurol, Crkvice 67, Zenica 72000, Bosnia & Herceg
[2] Univ Zenica, Sch Med, Dept Anat, Travnicka 1, Zenica 72000, Bosnia & Herceg
[3] Univ Zenica, Travnicka 1, Zenica 72000, Bosnia & Herceg
[4] Cantonal Hosp Zenica, Dept Neurol, Crkvice 67, Zenica 72000, Bosnia & Herceg
[5] Gen Hosp Travnik, Dept Neurol, Travnik 72270, Bosnia & Herceg
[6] Obafemi Awolowo Univ Teaching Hosp Complex, Dept Surg, Div Neurosurg, Ilesa Rd PMB 5538, Ife 220282, Nigeria
[7] Univ Sarajevo, Sch Med, Dept Pathol, Univ 1, Sarajevo 71000, Bosnia & Herceg
[8] Univ Zenica, Sch Med, Dept Patophysiol, Travnicka 1, Zenica 72000, Bosnia & Herceg
[9] Univ Clin Ctr Sarajevo, Dept Neurosurg, Bolnicka 25, Sarajevo 71000, Bosnia & Herceg
[10] Univ Sarajevo, Fac Sci, Dept Biol, Stjepana Tomica 1, Sarajevo 71000, Bosnia & Herceg
[11] Univ Zenica, Cantonal Hosp Zen, Fac Med, Travnicka 1, Zenica 72000, Bosnia & Herceg
[12] Univ Hosp Marburg, Dept Neurosurg, Baldingerstr, D-35033 Marburg, Germany
来源
BRAIN AND SPINE | 2024年 / 4卷
关键词
Thoracolumbar injuries; Vertebral fractures; Machine learning; Deep learning; Artificial intelligence; ARTIFICIAL-INTELLIGENCE; AUTOMATED DETECTION; SPINE; NEUROSURGERY; SURGERY; TRAUMA; LEVEL; STATE; CHINA;
D O I
10.1016/j.bas.2024.102809
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Introduction: Clinicians encounter challenges in promptly diagnosing thoracolumbar injuries (TLIs) and fractures (VFs), motivating the exploration of Artificial Intelligence (AI) and Machine Learning (ML) and Deep Learning (DL) technologies to enhance diagnostic capabilities. Despite varying evidence, the noteworthy transformative potential of AI in healthcare, leveraging insights from daily healthcare data, persists. Research question: This review investigates the utilization of ML and DL in TLIs causing VFs. Materials and methods: Employing Preferred Reporting Items for Systematic Reviews and Meta -Analyzes (PRISMA) methodology, a systematic review was conducted in PubMed and Scopus databases, identifying 793 studies. Seventeen were included in the systematic review, and 11 in the meta -analysis. Variables considered encompassed publication years, geographical location, study design, total participants (14,524), gender distribution, ML or DL methods, specific pathology, diagnostic modality, test analysis variables, validation details, and key study conclusions. Meta -analysis assessed specificity, sensitivity, and conducted hierarchical summary receiver operating characteristic curve (HSROC) analysis. Results: Predominantly conducted in China (29.41%), the studies involved 14,524 participants. In the analysis, 11.76% (N = 2) focused on ML, while 88.24% (N = 15) were dedicated to deep DL. Meta -analysis revealed a sensitivity of 0.91 (95% CI = 0.86 -0.95), consistent specificity of 0.90 (95% CI = 0.86 -0.93), with a false positive rate of 0.097 (95% CI = 0.068 -0.137). Conclusion: The study underscores consistent specificity and sensitivity estimates, affirming the diagnostic test 's robustness. However, the broader context of ML applications in TLIs emphasizes the critical need for standardization in methodologies to enhance clinical utility.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Performance of machine learning algorithms for glioma segmentation of brain MRI: a systematic literature review and meta-analysis
    van Kempen, Evi J.
    Post, Max
    Mannil, Manoj
    Witkam, Richard L.
    Ter Laan, Mark
    Patel, Ajay
    Meijer, Frederick J. A.
    Henssen, Dylan
    EUROPEAN RADIOLOGY, 2021, 31 (12) : 9638 - 9653
  • [42] A systematic review and meta-analysis of artificial neural network, machine learning, deep learning, and ensemble learning approaches in field of geotechnical engineering
    Yaghoubi E.
    Yaghoubi E.
    Khamees A.
    Vakili A.H.
    Neural Computing and Applications, 2024, 36 (21) : 12655 - 12699
  • [43] Machine Learning Approaches in High Myopia: Systematic Review and Meta-Analysis
    Zuo, Huiyi
    Huang, Baoyu
    He, Jian
    Fang, Liying
    Huang, Minli
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2025, 27
  • [44] Groundwater Level Modeling with Machine Learning: A Systematic Review and Meta-Analysis
    Ahmadi, Arman
    Olyaei, Mohammadali
    Heydari, Zahra
    Emami, Mohammad
    Zeynolabedin, Amin
    Ghomlaghi, Arash
    Daccache, Andre
    Fogg, Graham E.
    Sadegh, Mojtaba
    WATER, 2022, 14 (06)
  • [45] Machine learning for prediction of viral hepatitis: A systematic review and meta-analysis
    Moulaei, Khadijeh
    Sharifi, Hamid
    Bahaadinbeigy, Kambiz
    Haghdoost, Ali Akbar
    Nasiri, Naser
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2023, 179
  • [46] Machine learning in predicting antimicrobial resistance: a systematic review and meta-analysis
    Tang, Rui
    Luo, Rui
    Tang, Shiwei
    Song, Haoxin
    Chen, Xiujuan
    INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2022, 60 (5-6)
  • [47] Deep learning algorithms for detection of diabetic macular edema in OCT images: A systematic review and meta-analysis
    Li, He-Yan
    Wang, Dai-Xi
    Dong, Li
    Wei, Wen-Bin
    EUROPEAN JOURNAL OF OPHTHALMOLOGY, 2023, 33 (01) : 278 - 290
  • [48] Sensitivity and specificity of ultrasound for the diagnosis of acute pulmonary edema: a systematic review and meta-analysis
    Wang, Yan
    Shen, Zhiyang
    Lu, Xuefeng
    Zhen, Yanhua
    Li, Huixia
    MEDICAL ULTRASONOGRAPHY, 2018, 20 (01) : 32 - 36
  • [49] Evaluation of the Sensitivity and Specificity of MicroRNA in the Diagnosis of Cervical Cancer: A Systematic Review and Meta-analysis
    Rabiee, Fatemeh
    Kahrizsangi, Fatemeh Salehi
    Mehralizadeh, Neda
    Jamali, Somaye
    MEDICINA BALEAR, 2023, 38 (06):
  • [50] Brain metastasis tumor segmentation and detection using deep learning algorithms: A systematic review and meta-analysis
    Wang, Ting-Wei
    Hsu, Ming-Sheng
    Lee, Wei-Kai
    Pan, Hung-Chuan
    Yang, Huai-Che
    Lee, Cheng-Chia
    Wu, Yu-Te
    RADIOTHERAPY AND ONCOLOGY, 2024, 190