Sensitivity and specificity of machine learning and deep learning algorithms in the diagnosis of thoracolumbar injuries resulting in vertebral fractures: A systematic review and meta-analysis

被引:1
|
作者
Beculic, Hakija [1 ,2 ]
Begagic, Emir [3 ]
Dzidic-Krivic, Amina [4 ]
Pugonja, Ragib [2 ]
Softic, Namira [1 ]
Basic, Binasa [5 ]
Balogun, Simon [6 ]
Nuhovic, Adem [7 ]
Softic, Emir [8 ]
Ljevakovic, Adnana [5 ]
Sefo, Haso [9 ]
Segalo, Sabina [10 ]
Skomorac, Rasim [2 ,11 ]
Pojskic, Mirza [12 ]
机构
[1] Cantonal Hosp Zenica, Dept Neurol, Crkvice 67, Zenica 72000, Bosnia & Herceg
[2] Univ Zenica, Sch Med, Dept Anat, Travnicka 1, Zenica 72000, Bosnia & Herceg
[3] Univ Zenica, Travnicka 1, Zenica 72000, Bosnia & Herceg
[4] Cantonal Hosp Zenica, Dept Neurol, Crkvice 67, Zenica 72000, Bosnia & Herceg
[5] Gen Hosp Travnik, Dept Neurol, Travnik 72270, Bosnia & Herceg
[6] Obafemi Awolowo Univ Teaching Hosp Complex, Dept Surg, Div Neurosurg, Ilesa Rd PMB 5538, Ife 220282, Nigeria
[7] Univ Sarajevo, Sch Med, Dept Pathol, Univ 1, Sarajevo 71000, Bosnia & Herceg
[8] Univ Zenica, Sch Med, Dept Patophysiol, Travnicka 1, Zenica 72000, Bosnia & Herceg
[9] Univ Clin Ctr Sarajevo, Dept Neurosurg, Bolnicka 25, Sarajevo 71000, Bosnia & Herceg
[10] Univ Sarajevo, Fac Sci, Dept Biol, Stjepana Tomica 1, Sarajevo 71000, Bosnia & Herceg
[11] Univ Zenica, Cantonal Hosp Zen, Fac Med, Travnicka 1, Zenica 72000, Bosnia & Herceg
[12] Univ Hosp Marburg, Dept Neurosurg, Baldingerstr, D-35033 Marburg, Germany
来源
BRAIN AND SPINE | 2024年 / 4卷
关键词
Thoracolumbar injuries; Vertebral fractures; Machine learning; Deep learning; Artificial intelligence; ARTIFICIAL-INTELLIGENCE; AUTOMATED DETECTION; SPINE; NEUROSURGERY; SURGERY; TRAUMA; LEVEL; STATE; CHINA;
D O I
10.1016/j.bas.2024.102809
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Introduction: Clinicians encounter challenges in promptly diagnosing thoracolumbar injuries (TLIs) and fractures (VFs), motivating the exploration of Artificial Intelligence (AI) and Machine Learning (ML) and Deep Learning (DL) technologies to enhance diagnostic capabilities. Despite varying evidence, the noteworthy transformative potential of AI in healthcare, leveraging insights from daily healthcare data, persists. Research question: This review investigates the utilization of ML and DL in TLIs causing VFs. Materials and methods: Employing Preferred Reporting Items for Systematic Reviews and Meta -Analyzes (PRISMA) methodology, a systematic review was conducted in PubMed and Scopus databases, identifying 793 studies. Seventeen were included in the systematic review, and 11 in the meta -analysis. Variables considered encompassed publication years, geographical location, study design, total participants (14,524), gender distribution, ML or DL methods, specific pathology, diagnostic modality, test analysis variables, validation details, and key study conclusions. Meta -analysis assessed specificity, sensitivity, and conducted hierarchical summary receiver operating characteristic curve (HSROC) analysis. Results: Predominantly conducted in China (29.41%), the studies involved 14,524 participants. In the analysis, 11.76% (N = 2) focused on ML, while 88.24% (N = 15) were dedicated to deep DL. Meta -analysis revealed a sensitivity of 0.91 (95% CI = 0.86 -0.95), consistent specificity of 0.90 (95% CI = 0.86 -0.93), with a false positive rate of 0.097 (95% CI = 0.068 -0.137). Conclusion: The study underscores consistent specificity and sensitivity estimates, affirming the diagnostic test 's robustness. However, the broader context of ML applications in TLIs emphasizes the critical need for standardization in methodologies to enhance clinical utility.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] The Best Treatment for Thoracolumbar Fractures: A Systematic Review and Network Meta-Analysis
    Ghozy, S.
    Abbas, A. S.
    Mostafa, M. R.
    Elfaituri, M. K.
    Abdelnasser, F.
    Dung, N. Minh
    Karam, D.
    El-Badry, M.
    Alhattab, M. Antar
    Abdelmongy, M.
    Mohey, K.
    Dung, T. Cong
    Hirayama, K.
    Huy, N. Tien
    BRITISH JOURNAL OF SURGERY, 2019, 106 : 17 - 17
  • [32] The value of machine learning approaches in the diagnosis of early gastric cancer: a systematic review and meta-analysis
    Yiheng Shi
    Haohan Fan
    Li Li
    Yaqi Hou
    Feifei Qian
    Mengting Zhuang
    Bei Miao
    Sujuan Fei
    World Journal of Surgical Oncology, 22
  • [33] Mammography diagnosis of breast cancer screening through machine learning: a systematic review and meta-analysis
    Junjie Liu
    Jiangjie Lei
    Yuhang Ou
    Yilong Zhao
    Xiaofeng Tuo
    Baoming Zhang
    Mingwang Shen
    Clinical and Experimental Medicine, 2023, 23 : 2341 - 2356
  • [34] Mammography diagnosis of breast cancer screening through machine learning: a systematic review and meta-analysis
    Liu, Junjie
    Lei, Jiangjie
    Ou, Yuhang
    Zhao, Yilong
    Tuo, Xiaofeng
    Zhang, Baoming
    Shen, Mingwang
    CLINICAL AND EXPERIMENTAL MEDICINE, 2023, 23 (06) : 2341 - 2356
  • [35] The value of machine learning approaches in the diagnosis of early gastric cancer: a systematic review and meta-analysis
    Shi, Yiheng
    Fan, Haohan
    Li, Li
    Hou, Yaqi
    Qian, Feifei
    Zhuang, Mengting
    Miao, Bei
    Fei, Sujuan
    WORLD JOURNAL OF SURGICAL ONCOLOGY, 2024, 22 (01)
  • [36] Image Analysis-Based Machine Learning for the Diagnosis of Retinopathy of Prematurity A Meta-analysis and Systematic Review
    Chu, Yihang
    Hu, Shipeng
    Li, Zilan
    Yang, Xiao
    Liu, Hui
    Yi, Xianglong
    Qi, Xinwei
    OPHTHALMOLOGY RETINA, 2024, 8 (07): : 678 - 687
  • [37] Machine learning and deep learning algorithms used to diagnosis of Alzheimer's: Review
    Balne, Sridevi
    Elumalai, Anupriya
    MATERIALS TODAY-PROCEEDINGS, 2021, 47 : 5151 - 5156
  • [38] Accuracy of deep learning in the differential diagnosis of coronary artery stenosis: a systematic review and meta-analysis
    Tu, Li
    Deng, Ying
    Chen, Yun
    Luo, Yi
    BMC MEDICAL IMAGING, 2024, 24 (01):
  • [39] Performance of machine learning algorithms for glioma segmentation of brain MRI: a systematic literature review and meta-analysis
    Evi J. van Kempen
    Max Post
    Manoj Mannil
    Richard L. Witkam
    Mark ter Laan
    Ajay Patel
    Frederick J. A. Meijer
    Dylan Henssen
    European Radiology, 2021, 31 : 9638 - 9653
  • [40] COMPARATIVE PERFORMANCE OF LOGISTIC REGRESSION AND MACHINE LEARNING ALGORITHMS FOR HOSPITAL READMISSIONS: A SYSTEMATIC REVIEW AND META-ANALYSIS
    Talwar, A.
    Huang, Y.
    Lopez-Olivo, M. A.
    Aparasu, R. R.
    VALUE IN HEALTH, 2021, 24 : S182 - S182