Sensitivity and specificity of machine learning and deep learning algorithms in the diagnosis of thoracolumbar injuries resulting in vertebral fractures: A systematic review and meta-analysis

被引:1
|
作者
Beculic, Hakija [1 ,2 ]
Begagic, Emir [3 ]
Dzidic-Krivic, Amina [4 ]
Pugonja, Ragib [2 ]
Softic, Namira [1 ]
Basic, Binasa [5 ]
Balogun, Simon [6 ]
Nuhovic, Adem [7 ]
Softic, Emir [8 ]
Ljevakovic, Adnana [5 ]
Sefo, Haso [9 ]
Segalo, Sabina [10 ]
Skomorac, Rasim [2 ,11 ]
Pojskic, Mirza [12 ]
机构
[1] Cantonal Hosp Zenica, Dept Neurol, Crkvice 67, Zenica 72000, Bosnia & Herceg
[2] Univ Zenica, Sch Med, Dept Anat, Travnicka 1, Zenica 72000, Bosnia & Herceg
[3] Univ Zenica, Travnicka 1, Zenica 72000, Bosnia & Herceg
[4] Cantonal Hosp Zenica, Dept Neurol, Crkvice 67, Zenica 72000, Bosnia & Herceg
[5] Gen Hosp Travnik, Dept Neurol, Travnik 72270, Bosnia & Herceg
[6] Obafemi Awolowo Univ Teaching Hosp Complex, Dept Surg, Div Neurosurg, Ilesa Rd PMB 5538, Ife 220282, Nigeria
[7] Univ Sarajevo, Sch Med, Dept Pathol, Univ 1, Sarajevo 71000, Bosnia & Herceg
[8] Univ Zenica, Sch Med, Dept Patophysiol, Travnicka 1, Zenica 72000, Bosnia & Herceg
[9] Univ Clin Ctr Sarajevo, Dept Neurosurg, Bolnicka 25, Sarajevo 71000, Bosnia & Herceg
[10] Univ Sarajevo, Fac Sci, Dept Biol, Stjepana Tomica 1, Sarajevo 71000, Bosnia & Herceg
[11] Univ Zenica, Cantonal Hosp Zen, Fac Med, Travnicka 1, Zenica 72000, Bosnia & Herceg
[12] Univ Hosp Marburg, Dept Neurosurg, Baldingerstr, D-35033 Marburg, Germany
来源
BRAIN AND SPINE | 2024年 / 4卷
关键词
Thoracolumbar injuries; Vertebral fractures; Machine learning; Deep learning; Artificial intelligence; ARTIFICIAL-INTELLIGENCE; AUTOMATED DETECTION; SPINE; NEUROSURGERY; SURGERY; TRAUMA; LEVEL; STATE; CHINA;
D O I
10.1016/j.bas.2024.102809
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Introduction: Clinicians encounter challenges in promptly diagnosing thoracolumbar injuries (TLIs) and fractures (VFs), motivating the exploration of Artificial Intelligence (AI) and Machine Learning (ML) and Deep Learning (DL) technologies to enhance diagnostic capabilities. Despite varying evidence, the noteworthy transformative potential of AI in healthcare, leveraging insights from daily healthcare data, persists. Research question: This review investigates the utilization of ML and DL in TLIs causing VFs. Materials and methods: Employing Preferred Reporting Items for Systematic Reviews and Meta -Analyzes (PRISMA) methodology, a systematic review was conducted in PubMed and Scopus databases, identifying 793 studies. Seventeen were included in the systematic review, and 11 in the meta -analysis. Variables considered encompassed publication years, geographical location, study design, total participants (14,524), gender distribution, ML or DL methods, specific pathology, diagnostic modality, test analysis variables, validation details, and key study conclusions. Meta -analysis assessed specificity, sensitivity, and conducted hierarchical summary receiver operating characteristic curve (HSROC) analysis. Results: Predominantly conducted in China (29.41%), the studies involved 14,524 participants. In the analysis, 11.76% (N = 2) focused on ML, while 88.24% (N = 15) were dedicated to deep DL. Meta -analysis revealed a sensitivity of 0.91 (95% CI = 0.86 -0.95), consistent specificity of 0.90 (95% CI = 0.86 -0.93), with a false positive rate of 0.097 (95% CI = 0.068 -0.137). Conclusion: The study underscores consistent specificity and sensitivity estimates, affirming the diagnostic test 's robustness. However, the broader context of ML applications in TLIs emphasizes the critical need for standardization in methodologies to enhance clinical utility.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Machine learning value in the diagnosis of vertebral fractures: A systematic review and meta-analysis
    Li, Yue
    Liang, Zhuang
    Li, Yingchun
    Cao, Yang
    Zhang, Hui
    Dong, Bo
    EUROPEAN JOURNAL OF RADIOLOGY, 2024, 181
  • [2] Deep Learning Algorithms for Diagnosis of Lung Cancer: A Systematic Review and Meta-Analysis
    Forte, Gabriele C.
    Altmayer, Stephan
    Silva, Ricardo F.
    Stefani, Mariana T.
    Libermann, Lucas L.
    Cavion, Cesar C.
    Youssef, Ali
    Forghani, Reza
    King, Jeremy
    Mohamed, Tan-Lucien
    Andrade, Rubens G. F.
    Hochhegger, Bruno
    CANCERS, 2022, 14 (16)
  • [3] Machine Learning and Deep Learning for Diagnosis of Lumbar Spinal Stenosis: Systematic Review and Meta-Analysis
    Wang, Tianyi
    Chen, Ruiyuan
    Fan, Ning
    Zang, Lei
    Yuan, Shuo
    Du, Peng
    Wu, Qichao
    Wang, Aobo
    Li, Jian
    Kong, Xiaochuan
    Zhu, Wenyi
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2024, 26
  • [4] Deep learning and machine learning in CT-based COPD diagnosis: Systematic review and meta-analysis
    Wu, Qian
    Guo, Hui
    Li, Ruihan
    Han, Jinhuan
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2025, 196
  • [5] Deep learning for pneumothorax diagnosis: a systematic review and meta-analysis
    Sugibayashi, Takahiro
    Walston, Shannon L.
    Matsumoto, Toshimasa
    Mitsuyama, Yasuhito
    Miki, Yukio
    Ueda, Daiju
    EUROPEAN RESPIRATORY REVIEW, 2023, 32 (168):
  • [6] Machine learning algorithms for predicting PTSD: a systematic review and meta-analysis
    Vali, Masoumeh
    Nezhad, Hossein Motahari
    Kovacs, Levente
    Gandomi, Amir H.
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2025, 25 (01)
  • [7] Machine learning models and classification algorithms in the diagnosis of vestibular migraine: A systematic review and meta-analysis
    Suarez-Barcena, Pablo D.
    Parra-Perez, Alberto M.
    Martin-Lagos, Juan
    Gallego-Martinez, Alvaro
    Lopez-Escamez, Jose A.
    Perez-Carpena, Patricia
    HEADACHE, 2025, 65 (04): : 695 - 708
  • [8] Machine learning algorithms for diagnosis of hip bone osteoporosis: a systematic review and meta-analysis study
    Fakher Rahim
    Amin Zaki Zadeh
    Pouya Javanmardi
    Temitope Emmanuel Komolafe
    Mohammad Khalafi
    Ali Arjomandi
    Haniye Alsadat Ghofrani
    Kiarash Shirbandi
    BioMedical Engineering OnLine, 22
  • [9] Machine learning algorithms for diagnosis of hip bone osteoporosis: a systematic review and meta-analysis study
    Rahim, Fakher
    Zadeh, Amin Zaki
    Javanmardi, Pouya
    Komolafe, Temitope Emmanuel
    Khalafi, Mohammad
    Arjomandi, Ali
    Ghofrani, Haniye Alsadat
    Shirbandi, Kiarash
    BIOMEDICAL ENGINEERING ONLINE, 2023, 22 (01)
  • [10] Diagnostic accuracy of deep learning in orthopaedic fractures: a systematic review and meta-analysis
    Yang, S.
    Yin, B.
    Cao, W.
    Feng, C.
    Fan, G.
    He, S.
    CLINICAL RADIOLOGY, 2020, 75 (09) : 713.e17 - 713.e28