A Few-Shot Class-Incremental Learning Method for Network Intrusion Detection

被引:12
|
作者
Du, Lei [1 ,2 ]
Gu, Zhaoquan [1 ,2 ]
Wang, Ye [1 ,3 ]
Wang, Le [4 ]
Jia, Yan [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Shenzhen 518055, Guangdong, Peoples R China
[2] Dept New Networks, Peng Cheng Lab, Shenzhen 518055, Guangdong, Peoples R China
[3] Natl Univ Def Technol, Coll Comp, Changsha 410073, Peoples R China
[4] Guangzhou Univ, Cyberspace Inst Adv Technol, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Network intrusion detection; Power capacitors; Telecommunication traffic; Training; Task analysis; Prototypes; Cyber security; network intrusion detection; few-shot class-incremental learning;
D O I
10.1109/TNSM.2023.3332284
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid development of information technologies, the security of cyberspace has become increasingly serious. Network intrusion detection is a practical scheme to protect network systems from cyber attacks. However, as new vulnerabilities and unknown attack types are constantly emerging, only a few samples of such attacks can be captured for analysis, which cannot be handled by the existing detection methods deployed in real systems. To handle this problem, we propose a few-shot class-incremental learning method called Branch Fusion Strategy based Network Intrusion Detection (BFS-NID for short), which can continuously learn new attack classes with only a few samples. BFS-NID includes a feature extractor module and a branch classifier learning module. The feature extractor module uses a vision transformer to learn better feature representations in a self-supervised manner, and the parameters of the feature extractor are fixed to avoid catastrophic forgetting when the model learns incrementally. The branch classifier learning module sets re-projection for different branch sessions to enhance the feature representation ability between classes and employs a branch fusion strategy to associate the context of learned attack classes with new classes in different sessions. We conducted extensive experiments on two popular network intrusion detection benchmark datasets (CIC-IDS2017 and CSE-CIC-IDS2018) and the results demonstrate that BFS-NID surpasses the baselines and achieves the best performance.
引用
收藏
页码:2389 / 2401
页数:13
相关论文
共 50 条
  • [31] Few-Shot Class-Incremental Learning with Meta-Learned Class Structures
    Zheng, Guangtao
    Zhang, Aidong
    21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021, 2021, : 421 - 430
  • [32] Improved Continually Evolved Classifiers for Few-Shot Class-Incremental Learning
    Wang, Ye
    Zhao, Guoshuai
    Qian, Xueming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (02) : 1123 - 1134
  • [33] Incrementally Learned Angular Representations for Few-Shot Class-Incremental Learning
    Yoon, In-Ug
    Kim, Jong-Hwan
    IEEE ACCESS, 2023, 11 : 140626 - 140635
  • [34] A cognition-driven framework for few-shot class-incremental learning
    Wang, Xuan
    Ji, Zhong
    Pang, Yanwei
    Yu, Yunlong
    NEUROCOMPUTING, 2024, 600
  • [35] Causal Inference-based Few-Shot Class-Incremental Learning
    Zhou, Weiwei
    Xiao, Guoqiang
    Lew, Michael S.
    Wu, Song
    PROCEEDINGS OF THE 4TH ANNUAL ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2024, 2024, : 478 - 487
  • [36] Few-Shot Class-Incremental Learning via Relation Knowledge Distillation
    Dong, Songlin
    Hong, Xiaopeng
    Tao, Xiaoyu
    Chang, Xinyuan
    Wei, Xing
    Gong, Yihong
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 1255 - 1263
  • [37] Overcomplete-to-sparse representation learning for few-shot class-incremental learning
    Fu, Mengying
    Liu, Binghao
    Ma, Tianren
    Ye, Qixiang
    MULTIMEDIA SYSTEMS, 2024, 30 (02)
  • [38] Overcomplete-to-sparse representation learning for few-shot class-incremental learning
    Fu Mengying
    Liu Binghao
    Ma Tianren
    Ye Qixiang
    Multimedia Systems, 2024, 30
  • [39] CLOSER: Towards Better Representation Learning for Few-Shot Class-Incremental Learning
    Oh, Junghun
    Baik, Sungyong
    Lee, Kyoung Mu
    COMPUTER VISION - ECCV 2024, PT XLIX, 2025, 15107 : 18 - 35
  • [40] Few-Shot Class-Incremental Learning via Class-Aware Bilateral Distillation
    Zhao, Linglan
    Lu, Jing
    Xu, Yunlu
    Cheng, Zhanzhan
    Guo, Dashan
    Niu, Yi
    Fang, Xiangzhong
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 11838 - 11847