A Few-Shot Class-Incremental Learning Method for Network Intrusion Detection

被引:12
|
作者
Du, Lei [1 ,2 ]
Gu, Zhaoquan [1 ,2 ]
Wang, Ye [1 ,3 ]
Wang, Le [4 ]
Jia, Yan [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Shenzhen 518055, Guangdong, Peoples R China
[2] Dept New Networks, Peng Cheng Lab, Shenzhen 518055, Guangdong, Peoples R China
[3] Natl Univ Def Technol, Coll Comp, Changsha 410073, Peoples R China
[4] Guangzhou Univ, Cyberspace Inst Adv Technol, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Network intrusion detection; Power capacitors; Telecommunication traffic; Training; Task analysis; Prototypes; Cyber security; network intrusion detection; few-shot class-incremental learning;
D O I
10.1109/TNSM.2023.3332284
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid development of information technologies, the security of cyberspace has become increasingly serious. Network intrusion detection is a practical scheme to protect network systems from cyber attacks. However, as new vulnerabilities and unknown attack types are constantly emerging, only a few samples of such attacks can be captured for analysis, which cannot be handled by the existing detection methods deployed in real systems. To handle this problem, we propose a few-shot class-incremental learning method called Branch Fusion Strategy based Network Intrusion Detection (BFS-NID for short), which can continuously learn new attack classes with only a few samples. BFS-NID includes a feature extractor module and a branch classifier learning module. The feature extractor module uses a vision transformer to learn better feature representations in a self-supervised manner, and the parameters of the feature extractor are fixed to avoid catastrophic forgetting when the model learns incrementally. The branch classifier learning module sets re-projection for different branch sessions to enhance the feature representation ability between classes and employs a branch fusion strategy to associate the context of learned attack classes with new classes in different sessions. We conducted extensive experiments on two popular network intrusion detection benchmark datasets (CIC-IDS2017 and CSE-CIC-IDS2018) and the results demonstrate that BFS-NID surpasses the baselines and achieves the best performance.
引用
收藏
页码:2389 / 2401
页数:13
相关论文
共 50 条
  • [21] Decision Boundary Optimization for Few-shot Class-Incremental Learning
    Guo, Chenxu
    Zhao, Qi
    Lyu, Shuchang
    Liu, Binghao
    Wang, Chunlei
    Chen, Lijiang
    Cheng, Guangliang
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 3493 - 3503
  • [22] Flexible few-shot class-incremental learning with prototype container
    Xu, Xinlei
    Wang, Zhe
    Fu, Zhiling
    Guo, Wei
    Chi, Ziqiu
    Li, Dongdong
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (15): : 10875 - 10889
  • [23] Few-Shot Class-Incremental Learning for Named Entity Recognition
    Wang, Rui
    Yu, Tong
    Zhao, Handong
    Kim, Sungchul
    Mitra, Subrata
    Zhang, Ruiyi
    Henao, Ricardo
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 571 - 582
  • [24] Analogical Learning-Based Few-Shot Class-Incremental Learning
    Li, Jiashuo
    Dong, Songlin
    Gong, Yihong
    He, Yuhang
    Wei, Xing
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (07) : 5493 - 5504
  • [25] Prompt-based learning for few-shot class-incremental learning
    Yuan, Jicheng
    Chen, Hang
    Tian, Songsong
    Li, Wenfa
    Li, Lusi
    Ning, Enhao
    Zhang, Yugui
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 120 : 287 - 295
  • [26] Rethinking Few-Shot Class-Incremental Learning: Learning from Yourself
    Tang, Yu-Ming
    Peng, Yi-Xing
    Meng, Jingke
    Zheng, Wei-Shi
    COMPUTER VISION - ECCV 2024, PT LXI, 2025, 15119 : 108 - 128
  • [27] Rethinking few-shot class-incremental learning: A lazy learning baseline
    Qin, Zhili
    Han, Wei
    Liu, Jiaming
    Zhang, Rui
    Yang, Qingli
    Sun, Zejun
    Shao, Junming
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 250
  • [28] Few-Shot Class-Incremental Learning Based on Feature Distribution Learning
    Yao, Guangle
    Zhu, Juntao
    Zhou, Wenlong
    Zhang, Guiyu
    Zhang, Wei
    Zhang, Qian
    Computer Engineering and Applications, 2023, 59 (14) : 151 - 157
  • [29] Rethinking Self-Supervision for Few-Shot Class-Incremental Learning
    Zhao, Linglan
    Lu, Jing
    Cheng, Zhanzhan
    Liu, Duo
    Fang, Xiangzhong
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 726 - 731
  • [30] Knowledge Representation by Generic Models for Few-Shot Class-Incremental Learning
    Chen, Xiaodong
    Jiang, Weijie
    Huang, Zhiyong
    Su, Jiangwen
    Yu, Yuanlong
    ADVANCES IN NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, ICNC-FSKD 2022, 2023, 153 : 1237 - 1247