Harnessing Adaptive Sparsity: Data-Driven Control for Solar PV Generation

被引:0
|
作者
Zhang, Zhongtian [1 ]
Khazaei, Javad [1 ]
Blum, Rick S. [1 ]
机构
[1] Lehigh Univ, Elect & Comp Engn, Bethlehem, PA 18015 USA
基金
美国国家科学基金会;
关键词
Photovoltaic (PV) Systems; Single-stage PV; Closed-Loop Data-driven Modeling; Adaptive Regulated Sparse Regression;
D O I
10.1109/icSmartGrid61824.2024.10578177
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper introduces a novel statistical learning method using adaptive regulated sparsity promotion for data-driven modeling and control of solar photovoltaic (PV) generation in smart grids. Unlike traditional data-driven modeling approaches that may encounter computational challenges with an expanding pool of candidate functions, we propose an innovative algorithm called adaptive regulated sparse regression (ARSR). The proposed ARSR dynamically adjusts the hyperparameter weights of candidate functions to effectively capture the dynamics of PV systems. Leveraging this algorithm, we derive open-loop and closed-loop models of single-stage PV systems from measurements, facilitating a data-driven control design for PVs in smart grid.
引用
收藏
页码:603 / 608
页数:6
相关论文
共 50 条
  • [41] Data-Driven Modeling and Simulation of PV Array
    Thomas, Mini S.
    Nisar, Amira
    2015 2ND INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT (INDIACOM), 2015, : 308 - 313
  • [42] Data-driven Automatic Generation Control capacity prediction method
    Wang, Shuo
    Kong, Xiangyu
    Liu, Mao
    Shi, Haobo
    Wang, Xi
    Dai, Qian
    2022 25TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS 2022), 2022,
  • [43] Data-driven Anomaly Detection for Power System Generation Control
    Wang, Pengyuan
    Govindarasu, Manimaran
    Ashok, Aditya
    Sridhar, Siddharth
    McKinnon, David
    2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2017), 2017, : 1082 - 1089
  • [44] Harnessing Data-Driven Technologies for Sustainable Farming Practices
    Velez, Sergio
    Alvarez, Sara
    AGRONOMY-BASEL, 2024, 14 (12):
  • [45] Numerical Weather Data-Driven Sensor Data Generation for PV Digital Twins: A Hybrid Model Approach
    Lee, Jooseung
    Kang, Jimyung
    Son, Sangwoo
    Oh, Hui-Myoung
    IEEE ACCESS, 2025, 13 : 5009 - 5022
  • [46] SparseFIS: Data-Driven Learning of Fuzzy Systems With Sparsity Constraints
    Lughofer, Edwin
    Kindermann, Stefan
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2010, 18 (02) : 396 - 411
  • [47] Value iteration and adaptive dynamic programming for data-driven adaptive optimal control design
    Bian, Tao
    Jiang, Zhong-Ping
    AUTOMATICA, 2016, 71 : 348 - 360
  • [48] Data-driven stock trading in financial markets: an adaptive control approach
    Abbracciavento, Francesco
    Formentin, Simone
    Savaresi, Sergio Matteo
    INTERNATIONAL JOURNAL OF CONTROL, 2022, 95 (04) : 1032 - 1041
  • [49] Online data-driven composite adaptive backstepping control with exact differentiators
    Pan, Yongping
    Liu, Yiqi
    Yu, Haoyong
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2016, 30 (05) : 779 - 789
  • [50] Event-triggered Basis Augmentation for Data-driven Adaptive Control
    Guo, Jia
    Zhang, Fumin
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 2987 - 2992