Harnessing Adaptive Sparsity: Data-Driven Control for Solar PV Generation

被引:0
|
作者
Zhang, Zhongtian [1 ]
Khazaei, Javad [1 ]
Blum, Rick S. [1 ]
机构
[1] Lehigh Univ, Elect & Comp Engn, Bethlehem, PA 18015 USA
基金
美国国家科学基金会;
关键词
Photovoltaic (PV) Systems; Single-stage PV; Closed-Loop Data-driven Modeling; Adaptive Regulated Sparse Regression;
D O I
10.1109/icSmartGrid61824.2024.10578177
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper introduces a novel statistical learning method using adaptive regulated sparsity promotion for data-driven modeling and control of solar photovoltaic (PV) generation in smart grids. Unlike traditional data-driven modeling approaches that may encounter computational challenges with an expanding pool of candidate functions, we propose an innovative algorithm called adaptive regulated sparse regression (ARSR). The proposed ARSR dynamically adjusts the hyperparameter weights of candidate functions to effectively capture the dynamics of PV systems. Leveraging this algorithm, we derive open-loop and closed-loop models of single-stage PV systems from measurements, facilitating a data-driven control design for PVs in smart grid.
引用
收藏
页码:603 / 608
页数:6
相关论文
共 50 条
  • [21] Direct Data-Driven Vibration Control for Adaptive Optics
    Gupta, Vaibhav
    Karimi, Alireza
    Wildi, Francois
    Veran, Jean-Pierre
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 8521 - 8526
  • [22] Data-driven techniques for divide and conquer adaptive control
    Bertolissi, E
    Birattari, M
    Bontempi, G
    Duchâteau, A
    Bersini, H
    CONTROL APPLICATIONS OF OPTIMIZATION 2000, VOLS 1 AND 2, 2000, : 59 - 64
  • [23] A framework for data-driven adaptive GUI generation based on DICOM
    Gambino, Orazio
    Rundo, Leonardo
    Cannella, Vincenzo
    Vitabile, Salvatore
    Pirrone, Roberto
    JOURNAL OF BIOMEDICAL INFORMATICS, 2018, 88 : 37 - 52
  • [24] Data-Driven Sensitivity Coefficients Estimation for Cooperative Control of PV Inverters
    da Silva, Emanoel Leite
    Nogueira Lima, Antonio Marcus
    de Rossiter Correa, Mauricio Beltrao
    Vitorino, Montie Alves
    Barbosa, Luciano Tavares
    IEEE TRANSACTIONS ON POWER DELIVERY, 2020, 35 (01) : 278 - 287
  • [25] Data-Driven Learning for H∞ Control of Adaptive Cruise Control Systems
    Zhao, Jun
    Wang, Zhangu
    Lv, Yongfeng
    Na, Jing
    Liu, Congzhi
    Zhao, Ziliang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (12) : 18348 - 18362
  • [26] Data-Driven Retrospective Cost Adaptive Control for Flight Control Applications
    Ul Islam, Syed Aseem
    Nguyen, Tam W.
    Kolmanovsky, Ilya, V
    Bernstein, Dennis S.
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2021, 44 (10) : 1732 - 1758
  • [27] Harnessing solar power with adaptive control of PV-enriched microgrids using A3C-driven deep reinforcement learning
    Liao, Yaohua
    Jin, Xin
    Gu, Zhiming
    Li, Bo
    Pan, Tingzhe
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2025, 19 (01)
  • [28] Data-Driven Sparsity-Promoting Optimal Control of Power Buffers in DC Microgrids
    Massenio, Paolo Roberto
    Naso, David
    Lewis, Frank L.
    Davoudi, Ali
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2021, 36 (03) : 1919 - 1930
  • [29] Data-Driven Decentralized Control for Large-Scale Systems With Sparsity and Communication Delays
    Li, Yan
    Zhang, Hao
    Wang, Zhuping
    Huang, Chao
    Yan, Huaicheng
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (09): : 5614 - 5624
  • [30] Data-Driven Adaptive PID Control of Unknown Quadrotor UAVs
    Nan, Dong
    Li, Jiapeng
    Weng, Yongpeng
    Lian, Lian
    Yu, Cunqian
    Li, Shaowu
    PROCEEDINGS OF 2020 IEEE 9TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS'20), 2020, : 953 - 958