Detection of Anomalous Behavior of Smartphone Devices using Changepoint Analysis and Machine Learning Techniques

被引:1
|
作者
Sanchez, Ricardo Alejandro Manzano [1 ]
Naik, Kshirasagar [1 ]
Albasir, Abdurhman [1 ]
Zaman, Marzia [2 ]
Goel, Nishith [2 ]
机构
[1] Univ Waterloo, 200 Univ Ave, Waterloo, ON N2L 3G1, Canada
[2] Cistel Technol Inc, 30 Concourse Gate, Nepean, ON, Canada
来源
关键词
Malware detection; non-parametric and parametric changepoint detection; power measurement; time-series; machine learning; Drebin dataset; ANDROID MALWARE DETECTION; ENERGY-CONSUMPTION;
D O I
10.1145/3492327
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Detecting anomalous behavior on smartphones is challenging sincemalware evolution. Othermethodologies detect malicious behavior by analyzing static features of the application code or dynamic data samples obtained from hardware or software. Static analysis is prone to code's obfuscation while dynamic needs that malicious activities to cease to be dormant in the shortest possible time while data samples are collected. Triggering and capturing malicious behavior in data samples in dynamic analysis is challenging since we need to generate an efficient combination of user's inputs to trigger these malicious activities. We propose a general model which uses a data collector and analyzer to unveil malicious behavior by analyzing the device's power consumption since this summarizes the changes in software. The data collector uses an automated tool to generate user inputs. The data analyzer uses changepoint analysis to extract features from power consumption and machine learning techniques to train these features. The data analyzer stage contains two methodologies that extract features using parametric and non-parametric changepoint. Our methodologies are efficient in data collection time than a manual method and the data analyzer provides higher accuracy compared to other techniques, reaching over 94% F1-measure for emulated and real malware.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Vehicle Detection and Tracking Using Machine Learning Techniques
    Dimililer, Kamil
    Ever, Yoney Kirsal
    Mustafa, Sipan Masoud
    10TH INTERNATIONAL CONFERENCE ON THEORY AND APPLICATION OF SOFT COMPUTING, COMPUTING WITH WORDS AND PERCEPTIONS - ICSCCW-2019, 2020, 1095 : 373 - 381
  • [42] Phishing Email Detection Using Machine Learning Techniques
    Alammar, Meaad
    Badawi, Maria Altaib
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (05): : 277 - 283
  • [43] Obesity Risk Detection using Machine Learning Techniques
    Dwivedi, Nitish
    Singh, Vinayak
    Gourisaria, Mahendra Kumar
    Chatterjee, Rajdeep
    Bandyopadhyay, Anjan
    Patra, Sudhansu Shekhar
    2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE COMPUTING AND SMART SYSTEMS, ICSCSS 2024, 2024, : 761 - 766
  • [44] Retinal Disease Detection Using Machine Learning Techniques
    Pawar, Pooja M.
    Agrawal, Avinash J.
    HELIX, 2018, 8 (05): : 3932 - 3937
  • [45] Multiple Disease Detection using Machine Learning Techniques
    Acharya, Dipanjan
    Eashwer, K.
    Kumar, Soumya
    Sivakumar, R.
    Kishoreraja, P. C.
    Srinivasagan, Ramasamy
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2023, 19 (13) : 120 - 137
  • [46] Network Intrusion Detection Using Machine Learning Techniques
    Almutairi, Yasmeen
    Alhazmi, Bader
    Munshi, Amr
    ADVANCES IN SCIENCE AND TECHNOLOGY-RESEARCH JOURNAL, 2022, 16 (03) : 193 - 206
  • [47] Phishing Email Detection Using Machine Learning Techniques
    Alattas, Hussain
    Aljohar, Fay
    Aljunibi, Hawra
    Alweheibi, Muneera
    Alrashdi, Rawan
    Al Azman, Ghadeer
    Alharby, Abdulrahman
    Nagy, Naya
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (04): : 678 - 685
  • [48] DDoS Detection in SDN using Machine Learning Techniques
    Nadeem, Muhammad Waqas
    Goh, Hock Guan
    Ponnusamy, Vasaki
    Aun, Yichiet
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (01): : 771 - 789
  • [49] SQL Injection Detection Using Machine Learning Techniques
    Hosam, Eman
    Hosny, Hagar
    Ashraf, Walaa
    Kaseb, Ahmed S.
    2021 8TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE (ISCMI 2021), 2021, : 15 - 20
  • [50] Design Pattern Detection using Machine Learning Techniques
    Chaturvedi, Shivam
    Chaturvedi, Amrita
    Tiwari, Anurag
    Agarwal, Shalini
    2018 7TH INTERNATIONAL CONFERENCE ON RELIABILITY, INFOCOM TECHNOLOGIES AND OPTIMIZATION (TRENDS AND FUTURE DIRECTIONS) (ICRITO) (ICRITO), 2018, : 246 - 251