Detection of Anomalous Behavior of Smartphone Devices using Changepoint Analysis and Machine Learning Techniques

被引:1
|
作者
Sanchez, Ricardo Alejandro Manzano [1 ]
Naik, Kshirasagar [1 ]
Albasir, Abdurhman [1 ]
Zaman, Marzia [2 ]
Goel, Nishith [2 ]
机构
[1] Univ Waterloo, 200 Univ Ave, Waterloo, ON N2L 3G1, Canada
[2] Cistel Technol Inc, 30 Concourse Gate, Nepean, ON, Canada
来源
关键词
Malware detection; non-parametric and parametric changepoint detection; power measurement; time-series; machine learning; Drebin dataset; ANDROID MALWARE DETECTION; ENERGY-CONSUMPTION;
D O I
10.1145/3492327
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Detecting anomalous behavior on smartphones is challenging sincemalware evolution. Othermethodologies detect malicious behavior by analyzing static features of the application code or dynamic data samples obtained from hardware or software. Static analysis is prone to code's obfuscation while dynamic needs that malicious activities to cease to be dormant in the shortest possible time while data samples are collected. Triggering and capturing malicious behavior in data samples in dynamic analysis is challenging since we need to generate an efficient combination of user's inputs to trigger these malicious activities. We propose a general model which uses a data collector and analyzer to unveil malicious behavior by analyzing the device's power consumption since this summarizes the changes in software. The data collector uses an automated tool to generate user inputs. The data analyzer uses changepoint analysis to extract features from power consumption and machine learning techniques to train these features. The data analyzer stage contains two methodologies that extract features using parametric and non-parametric changepoint. Our methodologies are efficient in data collection time than a manual method and the data analyzer provides higher accuracy compared to other techniques, reaching over 94% F1-measure for emulated and real malware.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Horizon detection using machine learning techniques
    Fefilatyev, Sergiy
    Smarodzinava, Volha
    Hall, Lawrence O.
    Goldgof, Dmitry B.
    ICMLA 2006: 5TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, PROCEEDINGS, 2006, : 17 - +
  • [22] Anomaly Detection using Machine Learning Techniques
    Wankhede, Sonali B.
    2019 IEEE 5TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2019,
  • [23] Detection of Compromised Smart Grid Devices with Machine Learning and Convolution Techniques
    Kaygusuz, Cengiz
    Babun, Leonardo
    Aksu, Hidayet
    Uluagac, A. Selcuk
    2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2018,
  • [24] Intrusion Detection Using Machine Learning and Deep Learning Techniques
    Calisir, Sinan
    Atay, Remzi
    Pehlivanoglu, Meltem Kurt
    Duru, Nevcihan
    2019 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2019, : 656 - 660
  • [25] Intrusion detection based on behavior mining and machine learning techniques
    Mukkamala, Srinivas
    Xu, Dennis
    Sung, Andrew H.
    ADVANCES IN APPLIED ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4031 : 619 - 628
  • [26] Learning Process Analysis using Machine Learning Techniques
    Fernandez-Robles, Laura
    Alaiz-Moreton, Hector
    Alfonso-Cendon, Javier
    Castejon-Limas, Manuel
    Panizo-Alonso, Luis
    INTERNATIONAL JOURNAL OF ENGINEERING EDUCATION, 2018, 34 (03) : 981 - 989
  • [27] YourPantry: Food Monitoring Through Pantry Analysis Using the Smartphone and Making Use Machine Learning and Deep Learning Techniques
    Moguel, Enrique
    Garcia-Alonso, Jose
    Laso, Sergio
    GERONTECHNOLOGY, IWOG 2019, 2020, 1185 : 3 - 10
  • [28] Automatic Detection of Clickbait Headlines Using Semantic Analysis and Machine Learning Techniques
    Bronakowski, Mark
    Al-khassaweneh, Mahmood
    Al Bataineh, Ali
    APPLIED SCIENCES-BASEL, 2023, 13 (04):
  • [29] Fingernail analysis for early detection and diagnosis of diseases using machine learning techniques
    Shree, K. Dhana
    Jayabal, P.
    Kumar, A. Saran
    Logeswari, S.
    Priya, K. Ranjeetha
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 : 61 - 69
  • [30] Survey of Analysis of Crime Detection Techniques Using Data Mining and Machine Learning
    Prabakaran, S.
    Mitra, Shilpa
    PROCEEDINGS OF THE 10TH NATIONAL CONFERENCE ON MATHEMATICAL TECHNIQUES AND ITS APPLICATIONS (NCMTA 18), 2018, 1000