Prototypical VoteNet for Few-Shot 3D Point Cloud Object Detection

被引:0
|
作者
Zhao, Shizhen [1 ]
Qi, Xiaojuan [1 ]
机构
[1] Univ Hong Kong, Hong Kong, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most existing 3D point cloud object detection approaches heavily rely on large amounts of labeled training data. However, the labeling process is costly and time-consuming. This paper considers few-shot 3D point cloud object detection, where only a few annotated samples of novel classes are needed with abundant samples of base classes. To this end, we propose Prototypical VoteNet to recognize and localize novel instances, which incorporates two new modules: Prototypical Vote Module (PVM) and Prototypical Head Module (PHM). Specifically, as the 3D basic geometric structures can be shared among categories, PVM is designed to leverage class-agnostic geometric prototypes, which are learned from base classes, to refine local features of novel categories. Then PHM is proposed to utilize class prototypes to enhance the global feature of each object, facilitating subsequent object localization and classification, which is trained by the episodic training strategy. To evaluate the model in this new setting, we contribute two new benchmark datasets, FS-ScanNet and FS-SUNRGBD. We conduct extensive experiments to demonstrate the effectiveness of Prototypical VoteNet, and our proposed method shows significant and consistent improvements compared to baselines on two benchmark datasets. This project will be available at https://shizhen-zhao.github.io/FS3D_page/.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Geodesic-Former: A Geodesic-Guided Few-Shot 3D Point Cloud Instance Segmenter
    Tuan Ngo
    Khoi Nguyen
    COMPUTER VISION, ECCV 2022, PT XXIX, 2022, 13689 : 561 - 578
  • [32] Few-Shot Air Object Detection Network
    Cai, Wei
    Wang, Xin
    Jiang, Xinhao
    Yang, Zhiyong
    Di, Xingyu
    Gao, Weijie
    ELECTRONICS, 2023, 12 (19)
  • [33] Few-Shot Learning for Road Object Detection
    Majee, Anay
    Agrawal, Kshitij
    Subramanian, Anbumani
    AAAI WORKSHOP ON META-LEARNING AND METADL CHALLENGE, VOL 140, 2021, 140 : 115 - 126
  • [34] Incremental Few-Shot Object Detection for Robotics
    Li, Yiting
    Zhu, Haiyue
    Tian, Sichao
    Feng, Fan
    Ma, Jun
    Teo, Chek Sing
    Xiang, Cheng
    Vadakkepat, Prahlad
    Lee, Tong Heng
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 8447 - 8453
  • [35] Few-Shot Object Detection with Weight Imprinting
    Yan, Dingtian
    Huang, Jitao
    Sun, Hai
    Ding, Fuqiang
    COGNITIVE COMPUTATION, 2023, 15 (05) : 1725 - 1735
  • [36] Spatial reasoning for few-shot object detection
    Kim, Geonuk
    Jung, Hong-Gyu
    Lee, Seong-Whan
    PATTERN RECOGNITION, 2021, 120
  • [37] Industrial few-shot fractal object detection
    Huang, Haoran
    Luo, Xiaochuan
    Yang, Chen
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (28): : 21055 - 21069
  • [38] Hallucination Improves Few-Shot Object Detection
    Zhang, Weilin
    Wang, Yu-Xiong
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 13003 - 13012
  • [39] Few-Shot Object Detection with Model Calibration
    Fan, Qi
    Tang, Chi-Keung
    Tai, Yu-Wing
    COMPUTER VISION, ECCV 2022, PT XIX, 2022, 13679 : 720 - 739
  • [40] A Closer Look at Few-Shot Object Detection
    Liu, Yuhao
    Dong, Le
    He, Tengyang
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VIII, 2024, 14432 : 430 - 447