Multiscale Spatial-Spectral Invertible Compensation Network for Hyperspectral Remote Sensing Image Denoising

被引:0
|
作者
Li, Huiyang [1 ]
Ren, Kai [2 ]
Sun, Weiwei [3 ]
Yang, Gang [3 ]
Meng, Xiangchao [2 ]
机构
[1] Ningbo Univ, Sch Math & Stat, Ningbo 315211, Peoples R China
[2] Ningbo Univ, Fac Elect Engn & Comp Sci, Ningbo 315211, Peoples R China
[3] Ningbo Univ, Dept Geog & Spatial Informat Tech, Ningbo 315211, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolutional neural networks (CNNs); hyperspectral image (HSI) denoising; spatial-spectral invertible compensation; RESTORATION; REPRESENTATION;
D O I
10.1109/TGRS.2024.3457010
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral image (HSI) has fine spectral resolution and abundant spatial information to detect subtle differences between targets. However, it is heavily contaminated with noise due to sensor design and atmospheric radiative transfer, resulting in spectral shifts and spatial discontinuities. Current denoising methods usually establish constraints directly on the ground truth and denoised image, lacking supervision of intermediate parameters of the network, resulting in insufficient model constraints and poor convergence. In addition, existing methods do not consider spatial-spectral compensation, so the denoising results have obvious spatial-spectral distortion. To this end, we propose a novel multiscale spatial-spectral invertible compensation network (MSIC-Net) for HSI denoising. The method constructs an invertible spatial-spectral compensation (ISSC) module, which supervises intermediate features through inverse constraints, realizes the circulation of multiscale information, and improves the stability of the model. At the same time, we also introduce style transfer for spatial-spectral compensation, which uses its superior fine feature control ability to precisely compensate for the lost spatial and spectral detail features. The method is extensively validated experimentally and categorically on simulated and real datasets. The experimental results show that MSIC-Net outperforms other state-of-the-art denoising methods in quantitative and qualitative evaluations.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Adaptive Spatial-Spectral Dictionary Learning for Hyperspectral Image Denoising
    Fu, Ying
    Lam, Antony
    Sato, Imari
    Sato, Yoichi
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 343 - 351
  • [22] Hyperspectral Image Denoising via Spatial-Spectral Recurrent Transformer
    Fu, Guanyiman
    Xiong, Fengchao
    Lu, Jianfeng
    Zhou, Jun
    Zhou, Jiantao
    Qian, Yuntao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 14
  • [23] Hyperspectral Image Denoising With a Spatial-Spectral View Fusion Strategy
    Yuan, Qiangqiang
    Zhang, Liangpei
    Shen, Huanfeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (05): : 2314 - 2325
  • [24] Hyperspectral Image Denoising Employing a Spatial-Spectral Deep Residual Convolutional Neural Network
    Yuan, Qiangqiang
    Zhang, Qiang
    Li, Jie
    Shen, Huanfeng
    Zhang, Liangpei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (02): : 1205 - 1218
  • [25] SQAD: Spatial-Spectral Quasi-Attention Recurrent Network for Hyperspectral Image Denoising
    Pan, Erting
    Ma, Yong
    Mei, Xiaoguang
    Fan, Fan
    Huang, Jun
    Ma, Jiayi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [26] Hybrid Multiscale Spatial-Spectral Transformer for Hyperspectral Image Classification
    He, Yan
    Tu, Bing
    Liu, Bo
    Chen, Yunyun
    Li, Jun
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [27] A Multiscale Spatial-Spectral Prototypical Network for Hyperspectral Image Few-Shot Classification
    Tang, Haojin
    Huang, Zhiquan
    Li, Yanshan
    Zhang, Li
    Xie, Weixin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [28] Spatial-spectral weighted nuclear norm minimization for hyperspectral image denoising
    Huang, Xinjian
    Du, Bo
    Tao, Dapeng
    Zhang, Liangpei
    NEUROCOMPUTING, 2020, 399 : 271 - 284
  • [29] A Hybrid Spectral Attention-Enabled Multiscale Spatial-Spectral Learning Network for Hyperspectral Image Superresolution
    Wang, Wenjing
    Mu, Tingkui
    Li, Qiuxia
    Li, Haoyang
    Yang, Qiujie
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 11016 - 11033
  • [30] LR-Net: Low-Rank Spatial-Spectral Network for Hyperspectral Image Denoising
    Zhang, Hongyan
    Chen, Hongyu
    Yang, Guangyi
    Zhang, Liangpei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 8743 - 8758