Optimal depth and a novel approach to variational unitary quantum process tomography

被引:0
|
作者
Galetsky, Vladlen [1 ]
Julia Farre, Pol [2 ]
Ghosh, Soham [1 ]
Deppe, Christian [2 ]
Ferrara, Roberto [1 ]
机构
[1] Tech Univ Munich, Munich, Germany
[2] Tech Univ Carolo Wilhelmina Braunschweig, Braunschweig, Germany
来源
NEW JOURNAL OF PHYSICS | 2024年 / 26卷 / 07期
关键词
VQC; unitary process tomography; optimal depth; quantum computation; singular value decomposition;
D O I
10.1088/1367-2630/ad5df1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we present two new methods for variational quantum circuit (VQC) process tomography (PT) onto n qubits systems: unitary PT based on VQCs (PT_VQC) and unitary evolution-based variational quantum singular value decomposition (U-VQSVD). Compared to the state of the art, PT_VQC halves in each run the required amount of qubits for unitary PT and decreases the required state initializations from 4 n to just 2 n , all while ensuring high-fidelity reconstruction of the targeted unitary channel U. It is worth noting that, for a fixed reconstruction accuracy, PT_VQC achieves faster convergence per iteration step compared to quantum deep neural network and tensor network schemes. The novel U-VQSVD algorithm utilizes variational singular value decomposition to extract eigenvectors (up to a global phase) and their associated eigenvalues from an unknown unitary representing a universal channel. We assess the performance of U-VQSVD by executing an attack on a non-unitary channel quantum physical unclonable function. By using U-VQSVD we outperform an uninformed impersonation attack (using randomly generated input states) by a factor of 2 to 5, depending on the qubit dimension. For the two presented methods, we propose a new approach to calculate the complexity of the displayed VQC, based on what we denote as optimal depth.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] On the order problem in construction of unitary operators for the variational quantum eigensolver
    Izmaylov, Artur F.
    Diaz-Tinoco, Manuel
    Lang, Robert A.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (23) : 12980 - 12986
  • [32] A novel process monitoring approach based on variational recurrent autoencoder
    Cheng, Feifan
    He, Q. Peter
    Zhao, Jinsong
    COMPUTERS & CHEMICAL ENGINEERING, 2019, 129
  • [33] UNITARY TRANSFORMATION APPROACH TO QUANTUM ELECTRODYNAMICS
    SUZUKI, R
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1991, 104 (08): : 1115 - 1125
  • [34] OPTIMAL QUANTUM ERROR CORRECTION FROM HAMILTONIAN MODELS OR PROCESS TOMOGRAPHY
    Kosut, Robert L.
    COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2011, 11 (03) : 269 - 280
  • [35] Quantum state tomography with incomplete data: Maximum entropy and variational quantum tomography
    Goncalves, D. S.
    Lavor, C.
    Gomes-Ruggiero, M. A.
    Cesario, A. T.
    Vianna, R. O.
    Maciel, T. O.
    PHYSICAL REVIEW A, 2013, 87 (05):
  • [36] Variational approach to the optimal control of coherently driven, open quantum system dynamics
    Cavina, Vasco
    Mari, Andrea
    Carlini, Alberto
    Giovannetti, Vittorio
    PHYSICAL REVIEW A, 2018, 98 (05)
  • [37] A variational approach to optimal meshes
    Rumpf, M
    NUMERISCHE MATHEMATIK, 1996, 72 (04) : 523 - 540
  • [38] Classically Optimal Variational Quantum Algorithms
    Wurtz J.
    Love P.
    IEEE Transactions on Quantum Engineering, 2021, 2
  • [39] Variational Principle for Optimal Quantum Controls in Quantum Metrology
    Yang, Jing
    Pang, Shengshi
    Chen, Zekai
    Jordan, Andrew N.
    del Campo, Adolfo
    PHYSICAL REVIEW LETTERS, 2022, 128 (16)
  • [40] Unitary control process for quantum optimum detection
    Sasaki, M
    Hirota, O
    QUANTUM COMMUNICATION, COMPUTING, AND MEASUREMENT, 1997, : 269 - 277