Optimal depth and a novel approach to variational unitary quantum process tomography

被引:0
|
作者
Galetsky, Vladlen [1 ]
Julia Farre, Pol [2 ]
Ghosh, Soham [1 ]
Deppe, Christian [2 ]
Ferrara, Roberto [1 ]
机构
[1] Tech Univ Munich, Munich, Germany
[2] Tech Univ Carolo Wilhelmina Braunschweig, Braunschweig, Germany
来源
NEW JOURNAL OF PHYSICS | 2024年 / 26卷 / 07期
关键词
VQC; unitary process tomography; optimal depth; quantum computation; singular value decomposition;
D O I
10.1088/1367-2630/ad5df1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we present two new methods for variational quantum circuit (VQC) process tomography (PT) onto n qubits systems: unitary PT based on VQCs (PT_VQC) and unitary evolution-based variational quantum singular value decomposition (U-VQSVD). Compared to the state of the art, PT_VQC halves in each run the required amount of qubits for unitary PT and decreases the required state initializations from 4 n to just 2 n , all while ensuring high-fidelity reconstruction of the targeted unitary channel U. It is worth noting that, for a fixed reconstruction accuracy, PT_VQC achieves faster convergence per iteration step compared to quantum deep neural network and tensor network schemes. The novel U-VQSVD algorithm utilizes variational singular value decomposition to extract eigenvectors (up to a global phase) and their associated eigenvalues from an unknown unitary representing a universal channel. We assess the performance of U-VQSVD by executing an attack on a non-unitary channel quantum physical unclonable function. By using U-VQSVD we outperform an uninformed impersonation attack (using randomly generated input states) by a factor of 2 to 5, depending on the qubit dimension. For the two presented methods, we propose a new approach to calculate the complexity of the displayed VQC, based on what we denote as optimal depth.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Variational approach to quantum state tomography based on maximal entropy formalism
    Gupta, Rishabh
    Sajjan, Manas
    Levine, Raphael D.
    Kais, Sabre
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (47) : 28870 - 28877
  • [22] Unitary partitioning and the contextual subspace variational quantum eigensolver
    Ralli, Alexis
    Weaving, Tim
    Tranter, Andrew
    Kirby, William M.
    Love, Peter J.
    Coveney, Peter, V
    PHYSICAL REVIEW RESEARCH, 2023, 5 (01):
  • [23] Variational quantum circuits for quantum state tomography
    Liu, Yong
    Wang, Dongyang
    Xue, Shichuan
    Huang, Anqi
    Fu, Xiang
    Qiang, Xiaogang
    Xu, Ping
    Huang, He-Liang
    Deng, Mingtang
    Guo, Chu
    Yang, Xuejun
    Wu, Junjie
    PHYSICAL REVIEW A, 2020, 101 (05)
  • [24] Quantum-enhanced tomography of unitary processes
    Zhou, Xiao-Qi
    Cable, Hugo
    Whittaker, Rebecca
    Shadbolt, Peter
    O'Brien, Jeremy L.
    Matthews, Jonathan C. F.
    OPTICA, 2015, 2 (06): : 510 - 516
  • [25] Variational Entanglement-Assisted Quantum Process Tomography with Arbitrary Ancillary Qubits
    Xue, Shichuan
    Wang, Yizhi
    Zhan, Junwei
    Wang, Yaxuan
    Zeng, Ru
    Ding, Jiangfang
    Shi, Weixu
    Liu, Yong
    Liu, Yingwen
    Huang, Anqi
    Huang, Guangyao
    Yu, Chunlin
    Wang, Dongyang
    Fu, Xiang
    Qiang, Xiaogang
    Xu, Ping
    Deng, Mingtang
    Yang, Xuejun
    Wu, Junjie
    PHYSICAL REVIEW LETTERS, 2022, 129 (13)
  • [26] Depth-optimized quantum circuit synthesis for diagonal unitary operators with asymptotically optimal gate count
    Zhang, Shihao
    Huang, Kai
    Li, Lvzhou
    PHYSICAL REVIEW A, 2024, 109 (04)
  • [27] Resource-Efficient Chemistry on Quantum Computers with the Variational Quantum Eigensolver and the Double Unitary Coupled-Cluster Approach
    Metcalf, Mekena
    Bauman, Nicholas P.
    Kowalski, Karol
    de Jong, Wibe A.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (10) : 6165 - 6175
  • [28] Optimal Quantum Tomography
    Bisio, Alessandro
    Chiribella, Giulio
    D'Ariano, Giacomo Mauro
    Facchini, Stefano
    Perinotti, Paolo
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2009, 15 (06) : 1646 - 1660
  • [29] Optimal Quantum Dataset for Learning a Unitary Transformation
    Yu, Zhan
    Zhao, Xuanqiang
    Zhao, Benchi
    Wang, Xin
    PHYSICAL REVIEW APPLIED, 2023, 19 (03)
  • [30] Optimal stochastic modeling with unitary quantum dynamics
    Liu, Qing
    Elliott, Thomas J.
    Binder, Felix C.
    Di Franco, Carlo
    Gu, Mile
    PHYSICAL REVIEW A, 2019, 99 (06)