EXISTENCE AND STABILITY RESULTS OF FRACTIONAL DIFFERENTIAL EQUATIONS MITTAG-LEFFLER KERNEL

被引:0
|
作者
Abbas, Ahsan [1 ]
Mehmood, Nayyar [1 ]
Akgul, Ali [2 ,3 ]
Amacha, Inas [4 ]
Abdeljawad, Thabet [5 ,6 ]
机构
[1] Int Islamic Univ, Dept Math & Stat, Sect H-10, Islamabad, Pakistan
[2] Siirt Univ, Art & Sci Fac, Dept Math, TR-56100 Siirt, Turkiye
[3] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
[4] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[5] Prince Sultan Univ, Dept Math & Sci, Riyadh 11586, Saudi Arabia
[6] Sefako Makgatho Hlth Sci Univ, Sch Sci & Technol, Dept Math & Appl Math, Ga Rankuwa, South Africa
关键词
AB-Caputo Fractional BVP; Existence Results; Schauder Fixed Point Theorem; Uniqueness Krasnoselskii's Fixed Point Theorem; Banach Contraction Principle and Stability; ULAM STABILITY; UNIQUENESS;
D O I
10.1142/S0218348X24400413
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents the following AB-Caputo fractional boundary value problem (ABC)(0)D(alpha)u(sigma) = G(sigma, u(sigma)), sigma is an element of[0, 1] with integral-type boundary conditions u(0) = 0 = u ''(0), gamma u(1) = lambda integral(1)(0) g(1)(kappa)u(kappa)d kappa, of order 2 < alpha <= 3. Schauder and Krasnoselskii's fixed point theorems are used to find existence results. Uniqueness is obtained via the Banach contraction principle. To investigate the stability of a given problem, Hyers-Ulam stability is discussed. An example is provided to validate our results.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] On the recurrent computation of fractional operator with Mittag-Leffler kernel
    Bohaienko, Vsevolod
    APPLIED NUMERICAL MATHEMATICS, 2021, 162 : 137 - 149
  • [42] Mittag-Leffler stability for a new coupled system of fractional-order differential equations on network
    Gao, Yang
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [43] NUMERICAL AND ANALYTICAL SOLUTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS INVOLVING FRACTIONAL OPERATORS WITH POWER AND MITTAG-LEFFLER KERNEL
    Yepez-Martinez, H.
    Gomez-Aguilar, J. F.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2018, 13 (01)
  • [44] FRACTIONAL ORDER VOLTERRA INTEGRO-DIFFERENTIAL EQUATION WITH MITTAG-LEFFLER KERNEL
    Khan, Hasib
    Abdeljawad, Thabet
    Gomez-Aguilar, J. F.
    Tajadodi, Haleh
    Khan, Aziz
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (06)
  • [45] Ulam–Hyers–Mittag-Leffler stability for ψ-Hilfer fractional-order delay differential equations
    Kui Liu
    JinRong Wang
    Donal O’Regan
    Advances in Difference Equations, 2019
  • [46] Efficiency of the new fractional derivative with nonsingular Mittag-Leffler kernel to some nonlinear partial differential equations
    Yusuf, Abdullahi
    Inc, Mustafa
    Aliyu, Aliyu Isa
    Baleanu, Dumitru
    CHAOS SOLITONS & FRACTALS, 2018, 116 : 220 - 226
  • [47] Analysis of the fractional diarrhea model with Mittag-Leffler kernel
    Iqbal, Muhammad Sajid
    Ahmed, Nauman
    Akgul, Ali
    Raza, Ali
    Shahzad, Muhammad
    Iqbal, Zafar
    Rafiq, Muhammad
    Jarad, Fahd
    AIMS MATHEMATICS, 2022, 7 (07): : 13000 - 13018
  • [48] On Solutions of Fractional Telegraph Model With Mittag-Leffler Kernel
    Akgul, Ali
    Modanli, Mahmut
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2022, 17 (02):
  • [49] Fractional order volterra integro-differential equation with mittag-leffler kernel
    Khan, Hasib
    Abdeljawad, Thabet
    Gómez-Aguilar, J.F.
    Tajadodi, Haleh
    Khan, Aziz
    Fractals, 2021, 29 (06):
  • [50] MITTAG-LEFFLER STABILITY FOR NON-INSTANTANEOUS IMPULSIVE CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS WITH DELAYS
    Agarwal, Ravi
    Hristova, Snezhana
    O'Regan, Donal
    MATHEMATICA SLOVACA, 2019, 69 (03) : 583 - 598