EXISTENCE AND STABILITY RESULTS OF FRACTIONAL DIFFERENTIAL EQUATIONS MITTAG-LEFFLER KERNEL

被引:0
|
作者
Abbas, Ahsan [1 ]
Mehmood, Nayyar [1 ]
Akgul, Ali [2 ,3 ]
Amacha, Inas [4 ]
Abdeljawad, Thabet [5 ,6 ]
机构
[1] Int Islamic Univ, Dept Math & Stat, Sect H-10, Islamabad, Pakistan
[2] Siirt Univ, Art & Sci Fac, Dept Math, TR-56100 Siirt, Turkiye
[3] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
[4] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[5] Prince Sultan Univ, Dept Math & Sci, Riyadh 11586, Saudi Arabia
[6] Sefako Makgatho Hlth Sci Univ, Sch Sci & Technol, Dept Math & Appl Math, Ga Rankuwa, South Africa
关键词
AB-Caputo Fractional BVP; Existence Results; Schauder Fixed Point Theorem; Uniqueness Krasnoselskii's Fixed Point Theorem; Banach Contraction Principle and Stability; ULAM STABILITY; UNIQUENESS;
D O I
10.1142/S0218348X24400413
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents the following AB-Caputo fractional boundary value problem (ABC)(0)D(alpha)u(sigma) = G(sigma, u(sigma)), sigma is an element of[0, 1] with integral-type boundary conditions u(0) = 0 = u ''(0), gamma u(1) = lambda integral(1)(0) g(1)(kappa)u(kappa)d kappa, of order 2 < alpha <= 3. Schauder and Krasnoselskii's fixed point theorems are used to find existence results. Uniqueness is obtained via the Banach contraction principle. To investigate the stability of a given problem, Hyers-Ulam stability is discussed. An example is provided to validate our results.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Solutions of partial differential equations using the fractional operator involving Mittag-Leffler kernel
    Yavuz, Mehmet
    Ozdemir, Necati
    Baskonus, Haci Mehmet
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (06):
  • [22] Fixed point approach to the Mittag-Leffler kernel-related fractional differential equations
    Hammad, Hasanen A.
    Isik, Huseyin
    Aydi, Hassen
    De la Sen, Manuel
    AIMS MATHEMATICS, 2023, 8 (04): : 8633 - 8649
  • [23] Applications of some fixed point theorems for fractional differential equations with Mittag-Leffler kernel
    Hojjat Afshari
    Dumitru Baleanu
    Advances in Difference Equations, 2020
  • [24] Solutions of partial differential equations using the fractional operator involving Mittag-Leffler kernel
    Mehmet Yavuz
    Necati Ozdemir
    Haci Mehmet Baskonus
    The European Physical Journal Plus, 133
  • [25] Applications of some fixed point theorems for fractional differential equations with Mittag-Leffler kernel
    Afshari, Hojjat
    Baleanu, Dumitru
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [26] Solvability and stability of a class of fractional Langevin differential equations with the Mittag-Leffler function
    Baghani, Hamid
    Salem, Ahmed
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (02):
  • [27] Generalized Mittag-Leffler quadrature methods for fractional differential equations
    Yu Li
    Yang Cao
    Yan Fan
    Computational and Applied Mathematics, 2020, 39
  • [28] MITTAG-LEFFLER STABILITY OF SYSTEMS OF FRACTIONAL NABLA DIFFERENCE EQUATIONS
    Eloe, Paul
    Jonnalagadda, Jaganmohan
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (04) : 977 - 992
  • [29] FRACTIONAL DIRAC SYSTEMS WITH MITTAG-LEFFLER KERNEL
    Allahverd, Bilender P.
    Tuna, Huseyin
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2024, 73 (01): : 1 - 12
  • [30] A new existence results on fractional differential inclusions with state-dependent delay and Mittag-Leffler kernel in Banach space
    Arjunan, Mani Mallika
    Kavitha, Velusamy
    Baleanu, Dumitru
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2022, 30 (02): : 5 - 24