Artificial intelligence for diagnosis and prognosis prediction of natural killer/T cell lymphoma using magnetic resonance imaging

被引:4
|
作者
Zhang, Yuchen [1 ,2 ]
Deng, Yishu [1 ,3 ,4 ]
Zou, Qihua [1 ,2 ]
Jing, Bingzhong [1 ,3 ]
Cai, Peiqiang [1 ,5 ]
Tian, Xiaopeng [1 ,2 ]
Yang, Yu [6 ]
Li, Bingzong [7 ]
Liu, Fang [8 ]
Li, Zhihua [9 ]
Liu, Zaiyi [10 ,11 ]
Feng, Shiting [12 ]
Peng, Tingsheng [13 ]
Dong, Yujun [14 ]
Wang, Xin Yan [15 ]
Ruan, Guangying [1 ]
He, Yun [1 ]
Cui, Chunyan [1 ]
Li, Jiao [1 ]
Luo, Xiao [1 ]
Huang, Huiqiang [1 ,2 ]
Chen, Haohua [1 ,3 ]
Li, Songqi [16 ]
Sun, Ying [1 ,17 ]
Xie, Chuanmiao [1 ,5 ]
Wang, Liang [18 ]
Li, Chaofeng [1 ,3 ]
Cai, Qingqing [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Guangdong Prov Clin Res Ctr Canc, Guangdong Key Lab Nasopharyngeal Carcinoma Diag &, State Key Lab Oncol South China,Canc Ctr, Guangzhou 510060, Peoples R China
[2] Sun Yat Sen Univ, Dept Med Oncol, Canc Ctr, Guangzhou, Peoples R China
[3] Sun Yat Sen Univ, Informat Technol Ctr, Canc Ctr, Guangzhou 510060, Peoples R China
[4] Sun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou 510006, Peoples R China
[5] Sun Yat Sen Univ, Dept Radiol, Canc Ctr, Guangzhou, Peoples R China
[6] Fujian Prov Canc Hosp & Inst, Dept Lymphadenoma & Head & Neck Med Oncol, Fuzhou, Peoples R China
[7] Suzhou Univ, Affiliated Hosp 2, Dept Hematol, Suzhou, Jiangsu, Peoples R China
[8] First Peoples Hosp Foshan, Dept Pathol, Foshan, Peoples R China
[9] Sun Yat Sen Mem Hosp, Dept Oncol, Guangzhou, Guangdong, Peoples R China
[10] Southern Med Univ, Guangdong Prov Peoples Hosp, Guangdong Acad Med Sci, Dept Radiol, Guangzhou 510080, Peoples R China
[11] Guangdong Prov Key Lab Artificial Intelligence Med, Guangzhou 510080, Peoples R China
[12] Sun Yat Sen Univ, Affiliated Hosp 1, Dept Radiol, Guangzhou 510080, Peoples R China
[13] Sun Yat Sen Univ, Affiliated Hosp 1, Dept Pathol, Guangzhou 510080, Peoples R China
[14] Peking Univ First Hosp, Dept Hematol, Beijing 100034, Peoples R China
[15] Capital Med Univ, Beijing Tongren Hosp, Dept Radiol, Beijing 100730, Peoples R China
[16] Sun Yat Sen Univ, Zhongshan Sch Med, Guangzhou 510080, Peoples R China
[17] Sun Yat Sen Univ, Dept Radiat Oncol, Canc Ctr, Guangzhou, Peoples R China
[18] Capital Med Univ, Beijing Tongren Hosp, Dept Hematol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
NASAL-TYPE; SURVIVAL; MODEL;
D O I
10.1016/j.xcrm.2024.101551
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Accurate diagnosis and prognosis prediction are conducive to early intervention and improvement of medical care for natural killer/T cell lymphoma (NKTCL). Artificial intelligence (AI)-based systems are developed based on nasopharynx magnetic resonance imaging. The diagnostic systems achieve areas under the curve of 0.905-0.960 in detecting malignant nasopharyngeal lesions and distinguishing NKTCL from nasopharyngeal carcinoma in independent validation datasets. In comparison to human radiologists, the diagnostic systems show higher accuracies than resident radiologists and comparable ones to senior radiologists. The prognostic system shows promising performance in predicting survival outcomes of NKTCL and outperforms several clinical models. For patients with early-stage NKTCL, only the high-risk group benefits from early radiotherapy (hazard ratio = 0.414 vs. late radiotherapy; 95% confidence interval, 0.190-0.900, p = 0.022), while progression-free survival does not differ in the low-risk group. In conclusion, AI-based systems show potential in assisting accurate diagnosis and prognosis prediction and may contribute to therapeutic optimization for NKTCL.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] The role of artificial intelligence in cardiovascular magnetic resonance imaging
    Aromiwura, Afolasayo A.
    Cavalcante, Joao L.
    Kwong, Raymond Y.
    Ghazipour, Aryan
    Amini, Amir
    Bax, Jeroen
    Raman, Subha
    Pontone, Gianluca
    Kalra, Dinesh K.
    PROGRESS IN CARDIOVASCULAR DISEASES, 2024, 86 : 13 - 25
  • [32] The nasal natural killer T-cell lymphoma
    Claudia Chavarriaga, Maria
    Moreno, Ximena
    UNIVERSITAS MEDICA, 2011, 52 (01): : 106 - 111
  • [33] Extranodal Natural Killer T-Cell Lymphoma
    Sacks, Chana A.
    NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (06): : 562 - 562
  • [34] Testicular natural killer T-cell lymphoma
    Ballereau, C
    Leroy, X
    Morschhauser, F
    Fantoni, JC
    Lemaitre, L
    Villers, A
    Biserte, J
    INTERNATIONAL JOURNAL OF UROLOGY, 2005, 12 (02) : 223 - 224
  • [35] Review on natural killer/T-cell lymphoma
    He, Xiaohua
    Gao, Yan
    Li, Zhiming
    Huang, Huiqiang
    HEMATOLOGICAL ONCOLOGY, 2023, 41 (02) : 221 - 229
  • [36] Diagnosis of Bone Cancer and Improving Prognosis with Imaging and Artificial Intelligence
    Miao, J. H.
    Miao, K. H.
    JOURNAL OF INVESTIGATIVE MEDICINE, 2024, 72 (01)
  • [37] Natural killer T-cell lymphoma of the tongue
    Cho, KJ
    Cho, SG
    Lee, DH
    ANNALS OF OTOLOGY RHINOLOGY AND LARYNGOLOGY, 2005, 114 (01): : 55 - 57
  • [38] Nasal natural killer/T-cell lymphoma
    Lin, Che-Yi
    Cheng, Po-Wen
    OTOLARYNGOLOGY-HEAD AND NECK SURGERY, 2010, 143 (03) : 461 - 462
  • [39] Frequent Mutations in Natural Killer/T Cell Lymphoma
    Zhang, Yanjie
    Li, Chaoping
    Xue, Weili
    Zhang, Mingzhi
    Li, Zhaoming
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2018, 49 (01) : 1 - 16
  • [40] T-cell dysfunction in natural killer/T-cell lymphoma
    Feng, Xiaoyan
    Meng, Miaomiao
    Li, Hongwen
    Gao, Yuyang
    Song, Wenting
    Di, Ruiqing
    Li, Zhaoming
    Zhang, Xudong
    Zhang, Mingzhi
    ONCOIMMUNOLOGY, 2023, 12 (01):