Artificial intelligence for diagnosis and prognosis prediction of natural killer/T cell lymphoma using magnetic resonance imaging

被引:4
|
作者
Zhang, Yuchen [1 ,2 ]
Deng, Yishu [1 ,3 ,4 ]
Zou, Qihua [1 ,2 ]
Jing, Bingzhong [1 ,3 ]
Cai, Peiqiang [1 ,5 ]
Tian, Xiaopeng [1 ,2 ]
Yang, Yu [6 ]
Li, Bingzong [7 ]
Liu, Fang [8 ]
Li, Zhihua [9 ]
Liu, Zaiyi [10 ,11 ]
Feng, Shiting [12 ]
Peng, Tingsheng [13 ]
Dong, Yujun [14 ]
Wang, Xin Yan [15 ]
Ruan, Guangying [1 ]
He, Yun [1 ]
Cui, Chunyan [1 ]
Li, Jiao [1 ]
Luo, Xiao [1 ]
Huang, Huiqiang [1 ,2 ]
Chen, Haohua [1 ,3 ]
Li, Songqi [16 ]
Sun, Ying [1 ,17 ]
Xie, Chuanmiao [1 ,5 ]
Wang, Liang [18 ]
Li, Chaofeng [1 ,3 ]
Cai, Qingqing [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Guangdong Prov Clin Res Ctr Canc, Guangdong Key Lab Nasopharyngeal Carcinoma Diag &, State Key Lab Oncol South China,Canc Ctr, Guangzhou 510060, Peoples R China
[2] Sun Yat Sen Univ, Dept Med Oncol, Canc Ctr, Guangzhou, Peoples R China
[3] Sun Yat Sen Univ, Informat Technol Ctr, Canc Ctr, Guangzhou 510060, Peoples R China
[4] Sun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou 510006, Peoples R China
[5] Sun Yat Sen Univ, Dept Radiol, Canc Ctr, Guangzhou, Peoples R China
[6] Fujian Prov Canc Hosp & Inst, Dept Lymphadenoma & Head & Neck Med Oncol, Fuzhou, Peoples R China
[7] Suzhou Univ, Affiliated Hosp 2, Dept Hematol, Suzhou, Jiangsu, Peoples R China
[8] First Peoples Hosp Foshan, Dept Pathol, Foshan, Peoples R China
[9] Sun Yat Sen Mem Hosp, Dept Oncol, Guangzhou, Guangdong, Peoples R China
[10] Southern Med Univ, Guangdong Prov Peoples Hosp, Guangdong Acad Med Sci, Dept Radiol, Guangzhou 510080, Peoples R China
[11] Guangdong Prov Key Lab Artificial Intelligence Med, Guangzhou 510080, Peoples R China
[12] Sun Yat Sen Univ, Affiliated Hosp 1, Dept Radiol, Guangzhou 510080, Peoples R China
[13] Sun Yat Sen Univ, Affiliated Hosp 1, Dept Pathol, Guangzhou 510080, Peoples R China
[14] Peking Univ First Hosp, Dept Hematol, Beijing 100034, Peoples R China
[15] Capital Med Univ, Beijing Tongren Hosp, Dept Radiol, Beijing 100730, Peoples R China
[16] Sun Yat Sen Univ, Zhongshan Sch Med, Guangzhou 510080, Peoples R China
[17] Sun Yat Sen Univ, Dept Radiat Oncol, Canc Ctr, Guangzhou, Peoples R China
[18] Capital Med Univ, Beijing Tongren Hosp, Dept Hematol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
NASAL-TYPE; SURVIVAL; MODEL;
D O I
10.1016/j.xcrm.2024.101551
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Accurate diagnosis and prognosis prediction are conducive to early intervention and improvement of medical care for natural killer/T cell lymphoma (NKTCL). Artificial intelligence (AI)-based systems are developed based on nasopharynx magnetic resonance imaging. The diagnostic systems achieve areas under the curve of 0.905-0.960 in detecting malignant nasopharyngeal lesions and distinguishing NKTCL from nasopharyngeal carcinoma in independent validation datasets. In comparison to human radiologists, the diagnostic systems show higher accuracies than resident radiologists and comparable ones to senior radiologists. The prognostic system shows promising performance in predicting survival outcomes of NKTCL and outperforms several clinical models. For patients with early-stage NKTCL, only the high-risk group benefits from early radiotherapy (hazard ratio = 0.414 vs. late radiotherapy; 95% confidence interval, 0.190-0.900, p = 0.022), while progression-free survival does not differ in the low-risk group. In conclusion, AI-based systems show potential in assisting accurate diagnosis and prognosis prediction and may contribute to therapeutic optimization for NKTCL.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Use of Magnetic Resonance Imaging and Artificial Intelligence in Studies of Diagnosis of Parkinson's Disease
    Xu, Jingjing
    Zhang, Minming
    ACS CHEMICAL NEUROSCIENCE, 2019, 10 (06): : 2658 - +
  • [22] The automatic diagnosis artificial intelligence system for preoperative magnetic resonance imaging of uterine sarcoma
    Toyohara, Yusuke
    Sone, Kenbun
    Noda, Katsuhiko
    Yoshida, Kaname
    Kato, Shimpei
    Kaiume, Masafumi
    Taguchi, Ayumi
    Kurokawa, Ryo
    Osuga, Yutaka
    JOURNAL OF GYNECOLOGIC ONCOLOGY, 2024, 35 (03)
  • [23] Artificial intelligence in the diagnosis of shoulder injuries through magnetic resonance imaging: a scoping review
    Ramirez-Perez, Laura
    Cuesta-Vargas, Antonio Ignacio
    EVOLUTIONARY INTELLIGENCE, 2025, 18 (02)
  • [24] Correlation between the clinicopathological features and prognosis in patients with extranodal natural killer/T cell lymphoma
    Lin-Shu Zeng
    Wen-Ting Huang
    Tian Qiu
    Ling Shan
    Lei Guo
    Jian-Ming Ying
    Ning Lyu
    Xiao-Li Feng
    慢性疾病与转化医学(英文), 2017, 3 (04) : 252 - 259
  • [25] Artificial intelligence in pathologic diagnosis, prognosis and prediction of prostate cancer
    Zhu, Min
    Sali, Rasoul
    Baba, Firas
    Khasawneh, Hamdi
    Ryndin, Michelle
    Leveillee, Raymond J.
    Hurwitz, Mark
    Lui, Kin
    Dixon, Christopher
    Zhang, David Y.
    AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY, 2024, 12 (04): : 200 - 215
  • [26] Mucormycosis or extranodal natural killer/T cell lymphoma, similar symptoms but different diagnosis
    Zhang, Y.
    Wang, T.
    Liu, G. -L.
    Li, J.
    Gao, S. -Q.
    Wan, L.
    JOURNAL DE MYCOLOGIE MEDICALE, 2016, 26 (03): : 277 - 282
  • [27] Extranodal Natural Killer/T-cell Lymphoma, Nasal Type: Diagnosis and Treatment
    van Doesum, Jaap A.
    Niezink, Anne G. H.
    Huls, Gerwin A.
    Beijert, Max
    Diepstra, Arjan
    van Meerten, Tom
    HEMASPHERE, 2021, 5 (02):
  • [28] Artificial intelligence to analyze magnetic resonance imaging in rheumatology
    Adams, Lisa C.
    Bressem, Keno K.
    Ziegeler, Katharina
    Vahldiek, Janis L.
    Poddubnyy, Denis
    JOINT BONE SPINE, 2024, 91 (03)
  • [29] Artificial Intelligence in Magnetic Resonance Imaging: A Feasible Practice?
    Solomou, Aikaterini
    Apostolos, Anastasios
    Ntoulias, Nikolaos
    JOURNAL OF MEDICAL IMAGING AND RADIATION SCIENCES, 2020, 51 (03) : 501 - 502
  • [30] Artificial intelligence in multiparametric magnetic resonance imaging: A review
    Li, Cheng
    Li, Wen
    Liu, Chenyang
    Zheng, Hairong
    Cai, Jing
    Wang, Shanshan
    MEDICAL PHYSICS, 2022, 49 (10) : E1024 - E1054