Artificial intelligence for diagnosis and prognosis prediction of natural killer/T cell lymphoma using magnetic resonance imaging

被引:4
|
作者
Zhang, Yuchen [1 ,2 ]
Deng, Yishu [1 ,3 ,4 ]
Zou, Qihua [1 ,2 ]
Jing, Bingzhong [1 ,3 ]
Cai, Peiqiang [1 ,5 ]
Tian, Xiaopeng [1 ,2 ]
Yang, Yu [6 ]
Li, Bingzong [7 ]
Liu, Fang [8 ]
Li, Zhihua [9 ]
Liu, Zaiyi [10 ,11 ]
Feng, Shiting [12 ]
Peng, Tingsheng [13 ]
Dong, Yujun [14 ]
Wang, Xin Yan [15 ]
Ruan, Guangying [1 ]
He, Yun [1 ]
Cui, Chunyan [1 ]
Li, Jiao [1 ]
Luo, Xiao [1 ]
Huang, Huiqiang [1 ,2 ]
Chen, Haohua [1 ,3 ]
Li, Songqi [16 ]
Sun, Ying [1 ,17 ]
Xie, Chuanmiao [1 ,5 ]
Wang, Liang [18 ]
Li, Chaofeng [1 ,3 ]
Cai, Qingqing [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Guangdong Prov Clin Res Ctr Canc, Guangdong Key Lab Nasopharyngeal Carcinoma Diag &, State Key Lab Oncol South China,Canc Ctr, Guangzhou 510060, Peoples R China
[2] Sun Yat Sen Univ, Dept Med Oncol, Canc Ctr, Guangzhou, Peoples R China
[3] Sun Yat Sen Univ, Informat Technol Ctr, Canc Ctr, Guangzhou 510060, Peoples R China
[4] Sun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou 510006, Peoples R China
[5] Sun Yat Sen Univ, Dept Radiol, Canc Ctr, Guangzhou, Peoples R China
[6] Fujian Prov Canc Hosp & Inst, Dept Lymphadenoma & Head & Neck Med Oncol, Fuzhou, Peoples R China
[7] Suzhou Univ, Affiliated Hosp 2, Dept Hematol, Suzhou, Jiangsu, Peoples R China
[8] First Peoples Hosp Foshan, Dept Pathol, Foshan, Peoples R China
[9] Sun Yat Sen Mem Hosp, Dept Oncol, Guangzhou, Guangdong, Peoples R China
[10] Southern Med Univ, Guangdong Prov Peoples Hosp, Guangdong Acad Med Sci, Dept Radiol, Guangzhou 510080, Peoples R China
[11] Guangdong Prov Key Lab Artificial Intelligence Med, Guangzhou 510080, Peoples R China
[12] Sun Yat Sen Univ, Affiliated Hosp 1, Dept Radiol, Guangzhou 510080, Peoples R China
[13] Sun Yat Sen Univ, Affiliated Hosp 1, Dept Pathol, Guangzhou 510080, Peoples R China
[14] Peking Univ First Hosp, Dept Hematol, Beijing 100034, Peoples R China
[15] Capital Med Univ, Beijing Tongren Hosp, Dept Radiol, Beijing 100730, Peoples R China
[16] Sun Yat Sen Univ, Zhongshan Sch Med, Guangzhou 510080, Peoples R China
[17] Sun Yat Sen Univ, Dept Radiat Oncol, Canc Ctr, Guangzhou, Peoples R China
[18] Capital Med Univ, Beijing Tongren Hosp, Dept Hematol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
NASAL-TYPE; SURVIVAL; MODEL;
D O I
10.1016/j.xcrm.2024.101551
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Accurate diagnosis and prognosis prediction are conducive to early intervention and improvement of medical care for natural killer/T cell lymphoma (NKTCL). Artificial intelligence (AI)-based systems are developed based on nasopharynx magnetic resonance imaging. The diagnostic systems achieve areas under the curve of 0.905-0.960 in detecting malignant nasopharyngeal lesions and distinguishing NKTCL from nasopharyngeal carcinoma in independent validation datasets. In comparison to human radiologists, the diagnostic systems show higher accuracies than resident radiologists and comparable ones to senior radiologists. The prognostic system shows promising performance in predicting survival outcomes of NKTCL and outperforms several clinical models. For patients with early-stage NKTCL, only the high-risk group benefits from early radiotherapy (hazard ratio = 0.414 vs. late radiotherapy; 95% confidence interval, 0.190-0.900, p = 0.022), while progression-free survival does not differ in the low-risk group. In conclusion, AI-based systems show potential in assisting accurate diagnosis and prognosis prediction and may contribute to therapeutic optimization for NKTCL.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Artificial intelligence-assisted magnetic resonance imaging technology in the differential diagnosis and prognosis prediction of endometrial cancer
    Qi, Xinyu
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [2] Diagnosis and Prognosis of Stroke Using Artificial Intelligence and Imaging
    Miao, Kathleen
    Miao, Julia
    NEUROLOGY, 2023, 100 (17)
  • [3] Analysis of Efficacy and Prognosis of Extranodal Natural Killer/T Cell Lymphoma
    Dong, Huining
    Chen, Bao-An
    BLOOD, 2023, 142
  • [4] BRAIN CANCER DIAGNOSIS AND PROGNOSIS USING ARTIFICIAL INTELLIGENCE AND IMAGING
    Miao, K. H.
    Miao, J. H.
    JOURNAL OF INVESTIGATIVE MEDICINE, 2023, 71 (01) : NP562 - NP562
  • [5] Predicting the prognosis of lower rectal cancer using preoperative magnetic resonance imaging with artificial intelligence
    Udo, Ryutaro
    Mazaki, Junichi
    Hashimoto, Mikihiro
    Tago, Tomoya
    Kasahara, Kenta
    Ishizaki, Tetsuo
    Yamada, Tesshi
    Nagakawa, Yuichi
    TECHNIQUES IN COLOPROCTOLOGY, 2023, 27 (08) : 631 - 638
  • [6] Predicting the prognosis of lower rectal cancer using preoperative magnetic resonance imaging with artificial intelligence
    Ryutaro Udo
    Junichi Mazaki
    Mikihiro Hashimoto
    Tomoya Tago
    Kenta Kasahara
    Tetsuo Ishizaki
    Tesshi Yamada
    Yuichi Nagakawa
    Techniques in Coloproctology, 2023, 27 : 631 - 638
  • [7] The early diagnosis of testicular natural killer/T-cell lymphoma
    Shu, Pei
    Ling, Wenwu
    Zhu, Chenjing
    Wang, Jianchao
    Jiang, Chong
    Zhang, Weiwei
    Xiao, Yue
    Ma, Xuelei
    HELLENIC JOURNAL OF NUCLEAR MEDICINE, 2016, 19 (03): : 275 - 277
  • [8] Delayed Diagnosis of Nasal Natural Killer/T-Cell Lymphoma
    Villwock, Jennifer A.
    Jones, Kristin
    Back, Jason
    Goyal, Parul
    CASE REPORTS IN OTOLARYNGOLOGY, 2013, 2013
  • [9] MR imaging of nasal T-cell/natural killer cell lymphoma
    King, AD
    Lei, KIK
    Ahuja, AT
    Lam, WWM
    Metreweli, C
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2000, 174 (01) : 209 - 211
  • [10] Artificial intelligence in diagnosis of prostate cancer using magnetic resonance imaging. New approach
    Aboyan, I. A.
    Redkin, V. A.
    Nazaruk, M. G.
    Polyakov, A. S.
    Pakus, S. M.
    Lemeshko, S. I.
    Khasigov, A. V.
    ONKOUROLOGIYA, 2024, 19 (02):