Symplectic Tate homology

被引:7
|
作者
Albers, Peter [1 ]
Cieliebak, Kai [2 ]
Frauenfelder, Urs [3 ]
机构
[1] Univ Munster, Mathemat Inst, Einsteinstr 62, D-48149 Munster, Germany
[2] Univ Augsburg, Mathemat Inst, Univ Str 14, D-86159 Augsburg, Germany
[3] Seoul Natl Univ, Dept Math & Res, Inst Math, Seoul, South Korea
关键词
FLOER HOMOLOGY;
D O I
10.1112/plms/pdv065
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a Liouville domainW satisfying c(1)(W) = 0, we propose in this note two versions of symplectic Tate homology, <(H)under right arrow>(T) under left arrow-(W) and (H) under left arrow(T) under left arrow (W), which are related by a canonical map kappa: <(H)under right arrow>(T) under left arrow -> -(H) under left arrow(T) under left arrow (W). Our geometric approach to Tate homology uses the moduli space of finite energy gradient flow lines of the Rabinowitz action functional for a circle in the complex plane as a classifying space for S-1-equivariant Tate homology. For rational coefficients the symplectic Tate homology <(H)under right arrow>(T) under left arrow-(W; Q) has the fixed point property and is therefore isomorphic to H(W; Q)circle times(Q) Q[u, u(-1)], where Q[u, u(-1)] is the ring of Laurent polynomials over the rationals. Using a deep theorem of Goodwillie, we construct examples of Liouville domains where the canonical map. is not surjective and examples where it is not injective.
引用
收藏
页码:169 / 205
页数:37
相关论文
共 50 条
  • [31] THE SYMPLECTIC FLOER HOMOLOGY OF A DEHN TWIST
    Seidel, Paul
    MATHEMATICAL RESEARCH LETTERS, 1996, 3 (06) : 829 - 834
  • [32] Fibrancy of Symplectic Homology in Cotangent Bundles
    Kragh, Thomas
    STRING-MATH 2011, 2012, 85 : 401 - 407
  • [33] REPRESENTING HOMOLOGY CLASSES BY SYMPLECTIC SURFACES
    Hamilton, M. J. D.
    MATHEMATICAL RESEARCH LETTERS, 2012, 19 (05) : 1021 - 1024
  • [34] The growth rate of symplectic Floer homology
    Fel'shtyn, Alexander
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2012, 12 (1-2) : 93 - 119
  • [35] Symplectic homology of some Brieskorn manifolds
    Peter Uebele
    Mathematische Zeitschrift, 2016, 283 : 243 - 274
  • [36] S1-Equivariant Symplectic Homology and Linearized Contact Homology
    Bourgeois, Frederic
    Oancea, Alexandru
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (13) : 3849 - 3937
  • [37] Gorenstein n-flat dimension and Tate homology
    Selvaraj, C.
    Udhayakumar, R.
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2015, 7 (04): : 309 - 324
  • [38] Symplectic capacities from positive S1-equivariant symplectic homology
    Gutt, Jean
    Hutchings, Michael
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (06): : 3537 - 3600
  • [39] Gorenstein FI-Flat Dimension and Tate Homology
    Selvaraj C.
    Biju V.
    Udhayakumar R.
    Vietnam Journal of Mathematics, 2016, 44 (4) : 679 - 695
  • [40] Tate Homology of Modules of Finite Gorenstein Flat Dimension
    Li Liang
    Algebras and Representation Theory, 2013, 16 : 1541 - 1560