Symplectic Tate homology

被引:7
|
作者
Albers, Peter [1 ]
Cieliebak, Kai [2 ]
Frauenfelder, Urs [3 ]
机构
[1] Univ Munster, Mathemat Inst, Einsteinstr 62, D-48149 Munster, Germany
[2] Univ Augsburg, Mathemat Inst, Univ Str 14, D-86159 Augsburg, Germany
[3] Seoul Natl Univ, Dept Math & Res, Inst Math, Seoul, South Korea
关键词
FLOER HOMOLOGY;
D O I
10.1112/plms/pdv065
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a Liouville domainW satisfying c(1)(W) = 0, we propose in this note two versions of symplectic Tate homology, <(H)under right arrow>(T) under left arrow-(W) and (H) under left arrow(T) under left arrow (W), which are related by a canonical map kappa: <(H)under right arrow>(T) under left arrow -> -(H) under left arrow(T) under left arrow (W). Our geometric approach to Tate homology uses the moduli space of finite energy gradient flow lines of the Rabinowitz action functional for a circle in the complex plane as a classifying space for S-1-equivariant Tate homology. For rational coefficients the symplectic Tate homology <(H)under right arrow>(T) under left arrow-(W; Q) has the fixed point property and is therefore isomorphic to H(W; Q)circle times(Q) Q[u, u(-1)], where Q[u, u(-1)] is the ring of Laurent polynomials over the rationals. Using a deep theorem of Goodwillie, we construct examples of Liouville domains where the canonical map. is not surjective and examples where it is not injective.
引用
收藏
页码:169 / 205
页数:37
相关论文
共 50 条
  • [21] Relative and Tate homology with respect to semidualizing modules
    Di, Zhenxing
    Zhang, Xiaoxiang
    Liu, Zhongkui
    Chen, Jianlong
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (08)
  • [22] Symplectic homology of complements of smooth divisors
    Diogo, Luis
    Lisi, Samuel T.
    JOURNAL OF TOPOLOGY, 2019, 12 (03) : 967 - 1030
  • [23] On the filtered symplectic homology of prequantization bundles
    Ginzburg, Viktor L.
    Shon, Jeongmin
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2018, 29 (11)
  • [24] TATE (CO)HOMOLOGY VIA PINCHED COMPLEXES
    Christensen, Lars Winther
    Jorgensen, David A.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (02) : 667 - 689
  • [25] APPLICATIONS OF SYMPLECTIC HOMOLOGY-I
    FLOER, A
    HOFER, H
    WYSOCKI, K
    MATHEMATISCHE ZEITSCHRIFT, 1994, 217 (04) : 577 - 606
  • [26] Morse–Bott split symplectic homology
    Luís Diogo
    Samuel T. Lisi
    Journal of Fixed Point Theory and Applications, 2019, 21
  • [27] Symplectic surfaces in a fixed homology class
    Fintushel, R
    Stern, RJ
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1999, 52 (02) : 203 - 222
  • [28] The growth rate of symplectic Floer homology
    Alexander Fel’shtyn
    Journal of Fixed Point Theory and Applications, 2012, 12 : 93 - 119
  • [29] The symplectic Floer homology of composite knots
    Li, WP
    FORUM MATHEMATICUM, 1999, 11 (05) : 617 - 646
  • [30] Symplectic homology of some Brieskorn manifolds
    Uebele, Peter
    MATHEMATISCHE ZEITSCHRIFT, 2016, 283 (1-2) : 243 - 274